Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(12): e22577, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38046171

ABSTRACT

The present study investigated the utilization of blood clam shells as a potential substitute for conventional media, as well as the influence of the acclimation time on the efficacy of an intermittent slow sand filter (ISSF) in the treatment of real domestic wastewater. ISSF was operated with 16 h on and 8 h off, focusing on the parameters of turbidity, ammonia, and phosphate. Two media combinations (only blood clam shells [CC] and sand + blood clam shells [SC]) were operated under two different acclimatization periods (14 and 28 d). Results showed that SC medium exhibited significantly higher removal of turbidity (p < 0.05) as compared to CC medium (45.99 ± 26.84 % vs. 3.79 ± 9.35 %), while CC exhibited slightly higher (p > 0.05) removal of ammonia (23.12 ± 20.2 % vs. 16.77 ± 16.8 %) and phosphate (18.03 ± 11.96 % vs 13.48 ± 12 %). Comparing the acclimatization periods, the 28 d of acclimatization period showed higher overall performances than the 14 d. Further optimizations need to be conducted to obtain an effluent value below the national permissible limit, since the ammonia and phosphate parameters are still slightly higher. SEM analysis confirmed the formation of biofilm on both mediums after 28 d of acclimatization; with further analysis of schmutzdecke formation need to be carried out to enrich the results.

2.
Heliyon ; 7(11): e08268, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34778575

ABSTRACT

Coagulation and flocculation using bittern coagulant are effective methods for processing batik industrial wastewater containing heavy metals and high turbidity. Bittern as residual seawater product from salt production can be used as a natural coagulant as it contains magnesium (Mg2+), chloride (Cl-), and sulfate ions (SO4 2-) which can react with Pb2+ and turbidity to produce precipitation. This study focused on Pb2+ and turbidity removal from batik wastewater by introducing different variations of coagulant doses and variations in fast-stirring speed. Bittern coagulant dosage (v/v) of 5%, 15%, 25%, and 35% were used while fast-stirring speed were 55 rpm, 90 rpm, and 125 rpm. Results of this experiment showed that variations of coagulants and stirring speed to give Pb2+ maximum removal of 99.3% happened when coagulant dose and stirring speed at 35% and 55 rpm, while maximum turbidity removal at 97% happened when coagulant dose and stirring speed was 15 % and 125 rpm, respectively. Optimum dose using Response Surface Methodology (RSM) was at coagulant dose of 25% with 55 rpm, of which Pb2+ and turbidity removal were 99% and 93%, respectively.

3.
Vet World ; 11(8): 1127-1134, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30250373

ABSTRACT

AIM: The purpose of this study was to know the genetic and biochemical identification of isolated lactic acid bacteria (LAB) from Balinese bovine (Bos sondaicus) intestinal waste, acidity, and ox bile salts and to inhibit the growth pathogen of Staphylococcus aureus and Escherichia coli and the potential of those isolated to improve nutrient value of wheat pollard as animal feed ingredient by fermentation process. MATERIALS AND METHODS: This research was divided into three stages. The first stage, isolated LAB were obtained from the bovine intestines at a slaughterhouse in Indonesia. Small intestinal samples were collected from 10 healthy Balinese beef cattle (B. sondaicus). The isolated LAB were identified by VITEK 2, polymerase chain reaction, and 16S rDNA. The basic local alignment search tool (BLAST) was performed to determine the phylogenetic tree. The second stage, the LAB were screened for their tolerance at pH 2, 3, and 4; bile salt, and antagonistic to enteric pathogen. In the third stage, to determine the potency of this isolate to increase nutrient content of wheat pollard by facultative anaerobe fermentation for 3 and 5 days. RESULTS: The result of the first stage showed that the isolate could be identified as Lactobacilluscasei WPL 315. The result of the second stage showed that the isolate tolerance to low pH (pH 2, pH 3, and pH4) for 90 min and 24 h, and this isolate had viability tolerance in 0.3% bile salt. The isolate can inhibit S. aureus and E. coli. The result of the third stage by proximate analysis showed that crude protein increased by 23.08% after fermentation, while crude fiber decreased by 61.24% on the level 0.5% L. casei subsp. WPL 315 in the 3-day fermentation. CONCLUSION: Based on the results, it showed that L. casei WPL 315 derived from indigenous intestinal Balinese beef cattle (B. sondaicus) has tolerant characteristic on acidity and ox bile salts, has antagonistic effect against E. coli and S. aureus, and has the ability to increase crude protein and decrease crude fiber content of wheat pollard. It would be interesting to determine whether the strain has a probiotic candidate.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 148: 99-104, 2015 Sep 05.
Article in English | MEDLINE | ID: mdl-25875031

ABSTRACT

The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it.


Subject(s)
Carica/chemistry , Coloring Agents/chemistry , Electric Power Supplies , Photosensitizing Agents/chemistry , Pigments, Biological/chemistry , Solar Energy , Electrodes , Organometallic Compounds/chemistry , Plant Leaves/chemistry , Thiocyanates/chemistry , Titanium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...