Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Tissue Eng Regen Med ; 8(11): 850-61, 2014 Nov.
Article in English | MEDLINE | ID: mdl-22837178

ABSTRACT

Modern cardiovascular medicine aims for procedures that preferably involve biological materials and, ideally, living implants. Thereby, the regenerative capacity of the target organ may be preserved or even supported, with a potential implant growth capacity during the following time. In the current study we sought to evaluate the integrative capacity of vital and non-vital tracheal cartilage rings (TCRs) of allogenic or xenogenic origin (allo-/xeno-vTCR; allo-/xeno-nvTCR) as biomaterials under the in vivo functional load of the circulatory system. Ovine and porcine vTCRs and nvTCRs were implanted in the mitral valve (MV) position for 3 and 9 months (n = 3 each), respectively, in lambs. MV function and TCR position were analysed by echocardiography. Tissue morphology (planimetry), vitality (live/dead-assay) and implant endothelialization (scanning electron microscopy) were analysed. No functional impairment or significant MV insufficiency or stenosis was observed in any group. TCR shrinkage was observed in all xeno-TCRs and allo-nvTCRs at 3 months. Only TCRs of allogenic groups at 9 months and allo-vTCRs at 3 months showed a ring area comparable to its size at implantation. Moreover, allogenic vital cartilage showed superior tissue integration, greater endothelialization, less inflammation and calcification. Interestingly, in this group viable cartilage cells were found up to 9 months after implantation. Allogenic viable cartilage may represent a well-suited living material for reconstructive cardiovascular procedures, and further studies are warranted to elucidate the benefits of this novel material, particularly as a structurally supportive component in growing recipients.


Subject(s)
Biocompatible Materials/pharmacology , Cardiovascular Surgical Procedures , Cartilage/physiology , Plastic Surgery Procedures , Trachea/physiology , Animals , Biomechanical Phenomena/drug effects , Calcinosis/pathology , Cartilage/ultrastructure , Electrocardiography , Female , Hemodynamics/drug effects , Immunity/drug effects , Leukocytes/cytology , Prosthesis Implantation , Sheep , Sus scrofa
2.
Cardiovasc Res ; 85(4): 806-13, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-19920130

ABSTRACT

AIMS: A problem in generating artificial tissues is supplying nutrients to cells within 3D constructs. The use of a decellularized biological vascularized matrix with preserved pedicles (BioVaM), as a scaffold, appears to aid the generation of perfusable tissue constructs in vitro. To prevent vessel occlusion upon implantation, a functional endothelium must line the graft vessel bed. Here we tested whether the pro-angiogenic factor CCN1 could improve the re-endothelialization of BioVaM in vitro. METHODS AND RESULTS: BioVaM vessel beds were incubated with 100 ng/mL recombinant human CCN1. Human cord blood endothelial cells (hCBEC) were analysed with respect to adhesion behaviour upon CCN1 exposure and seeded onto vessel structures of CCN1 exposed BioVaM (cBioVaM). BioVaMs were fixed in a bioreactor and perfusion cultured for 4 and 14 days (d). BioVaM without CCN1 treatment served as controls. Initial seeding success and endothelialization progression were monitored by fluorescence-labelled hCBEC. During construct cultivation, pH and lactate production were measured. Degree of endothelialization and characterization of seeded cells, with respect to endothelial markers, were investigated histologically. BioVaM vessel structures showed a 78 +/- 17% increase of attached cells when pre-treated with CCN1. Evaluation of re-endothelialization (arbitrary units) was 4.0 +/- 0.8 and 2.6 +/- 0.8 after 4 d, and 5.0 +/- 0.0 and 3.0 +/- 0.5 after 14 d in cBioVaM vs. BioVaM, respectively. On day 14, lactate concentration, an indicator of metabolic activity, was increased 12-fold in cBioVaM relative to BioVaM. A preserved endothelial phenotype of seeded cells was verified in all cultures by acetylated low density lipoprotein uptake and positive immunohistochemistry against von Willebrand factor, endothelial nitric oxide synthase, and CD31. CONCLUSION: Coating of decellularized vessel structures with CCN1 supports adhesion of hCBEC and enhances re-endothelialization of BioVaM. Perfusable, endothelialized constructs may aid in solving the problem of nourishing cells inside 3D tissue-engineered constructs.


Subject(s)
Cysteine-Rich Protein 61/pharmacology , Endothelial Cells/drug effects , Neovascularization, Physiologic/drug effects , Tissue Engineering/methods , Cell Adhesion/drug effects , Cell Culture Techniques/methods , Cell Differentiation/drug effects , Cell Division/drug effects , Cells, Cultured , Extracellular Matrix/drug effects , Fetal Blood/cytology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...