Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Gen Virol ; 88(Pt 1): 342-350, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17170467

ABSTRACT

The type member Mycoreovirus 1 (MyRV-1) of a newly described genus, Mycoreovirus, isolated from a hypovirulent strain 9B21 of the chestnut blight fungus, has a genome composed of 11 dsRNA segments (S1-S11). All of the segments have single ORFs on their capped, positive-sense strands. Infection of insect cells by baculovirus recombinants carrying full-length cDNAs of S1-S11 resulted in overexpression of protein products of the expected sizes, based on their deduced amino acid sequences. This expression system was utilized to identify the S3-encoded protein (VP3) as a guanylyltransferase by an autoguanylylation assay, in which only VP3 was radiolabelled with [alpha-(32)P]GTP. A series of progressive N-terminal and C-terminal deletion mutants was made to localize the autoguanylylation-active site of VP3 to aa residues 133-667. Within this region, a sequence stretch (aa 170-250) with relatively high sequence similarity to homologues of two other mycoreoviruses and two coltiviruses was identified. Site-directed mutagenesis of conserved aa residues revealed that H233, H242, Y243, F244 and F246, but not K172 or K202, play critical roles in guanylyltransferase activities. Together with broader sequence alignments of 'turreted' reoviruses, these results supported the a/vxxHx(8)Hyf/lvf motif, originally noted for orthoreovirus and aquareoviruses, as an active site for guanylyltransferases of viruses within the Orthoreovirus, Aquareovirus, Cypovirus, Oryzavirus, Fijivirus, Coltivirus and Mycoreovirus genera, as well as for the proposed Dinovernavirus genus.


Subject(s)
Genome, Viral , Nucleotidyltransferases/metabolism , Reoviridae/enzymology , Animals , Baculoviridae/genetics , Gene Expression , Genetic Vectors , Nucleotidyltransferases/genetics , RNA, Viral/analysis , RNA, Viral/metabolism , Reoviridae/genetics
2.
J Gen Virol ; 85(Pt 11): 3437-3448, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15483262

ABSTRACT

Mycoreovirus 1 (MYRV-1) is the type species of the newly described genus Mycoreovirus of the large virus family Reoviridae. The virus was isolated from a hypovirulent strain (9B21) of the chestnut blight fungus, Cryphonectria parasitica. A previous study showed that double-shelled particles introduced to fungal spheroplasts resulted in stably infected colonies. Of the 11 double-stranded RNA genomic segments (S1-S11), the three largest (S1-S3) were sequenced previously and shown to have moderate levels of similarity to the homologous segments of mammal-pathogenic coltiviruses (Eyach virus and Colorado tick fever virus) and another fungus-infecting reovirus, Mycoreovirus 3 of Rosellinia necatrix strain W370 (MYRV-3/RnW370). The sequences of the remaining segments (S4-S11) are reported here. All of the segments have single ORFs on their positive strands and the terminal sequences 5'-GAUCA----GCAGUCA-3' are conserved among currently and previously sequenced segments. Oligo-cap analysis showed that the positive strands of the genomic segments are capped, whereas the negative strands are not. Similarities among the four evolutionarily related viruses include low or moderate levels of amino acid sequence identity (14.7-34.2 %) and isoelectric points among equivalent polypeptides, e.g. proteins encoded by segments S4 and S5 of the four viruses. Phylogenetic analysis indicated that MYRV-1/Cp9B21 is related more closely to MYRV-3/RnW370 than to the coltiviruses. An interesting dissimilarity is found in codon-choice pattern among the four viruses, i.e. MYRV-1/Cp9B21 segments have a lower frequency of [XYG+XYC] than corresponding segments of the other viruses, suggesting a possible adjustment of virus codon usage to their host environments.


Subject(s)
Ascomycota/virology , Genome, Viral , Reoviridae/genetics , Amino Acid Sequence , Isoelectric Point , Molecular Sequence Data , Open Reading Frames , Phylogeny , Sequence Alignment , Sequence Homology, Amino Acid , Terminal Repeat Sequences
3.
J Virol ; 78(2): 892-8, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14694120

ABSTRACT

RNA viruses of filamentous fungi fall into two broad categories, those that contain double-stranded RNA (dsRNA) genomes in rigid particles and those that are more closely related to positive-sense, single-stranded RNA viruses with dsRNA replicative intermediates found within lipid vesicles. Effective infectivity systems have been described for the latter, using RNA transcripts, but not for the former. We report the characterization of a reovirus from Cryphonectria parasitica, the filamentous fungus that causes chestnut blight disease. The virus substantially reduces the virulence of the fungus and results in dramatically altered colony morphology, as well as changes in other associated fungal traits, relative to the virus-free isogenic strain. Virus particles from infected mycelium contained 11 segments of dsRNA and showed characteristics typical of the family Reoviridae. Sequences of the largest three segments revealed that the virus is closely related to the Coltivirus genus of animal pathogens, which includes the human pathogen Colorado tick fever virus. The introduction of purified virus particles into protoplasts from virus-free isolates of the fungus resulted in a newly infected mycelium with the same morphology and virus composition as the original virus-infected isolate. This represents the completion of Koch's postulates for a true dsRNA virus from a filamentous fungus and the description of a definitive fungal member of the family Reoviridae.


Subject(s)
Ascomycota/virology , Coltivirus/classification , Reoviridae/classification , Reoviridae/isolation & purification , Virion/pathogenicity , Ascomycota/growth & development , Base Sequence , Coltivirus/genetics , Humans , Molecular Sequence Data , Phylogeny , RNA, Double-Stranded/genetics , RNA, Double-Stranded/isolation & purification , RNA, Viral/genetics , RNA, Viral/isolation & purification , Reoviridae/genetics , Reoviridae/pathogenicity , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...