Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Neuro Oncol ; 23(9): 1481-1493, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33556161

ABSTRACT

BACKGROUND: Despite multi-model therapy of maximal surgical resection, radiation, chemotherapy, and tumor-treating fields, the median survival of glioblastoma (GBM) patients is less than 15 months. Protein arginine methyltransferase 5 (PRMT5) catalyzes the symmetric dimethylation of arginine residues and is overexpressed in GBM. Inhibition of PRMT5 causes senescence in stem-like GBM tumor cells. LB100, a first-in-class small molecular inhibitor of protein phosphatase 2A (PP2A), can sensitize therapy-resistant tumor cells. Here, we tested the anti-GBM effect of concurrent PRMT5 and PP2A inhibition. METHODS: Patient-derived primary GBM neurospheres (GBMNS), transfected with PRMT5 target-specific siRNA, were treated with LB100 and subjected to in vitro assays including PP2A activity and western blot. The intracranial mouse xenograft model was used to test the in vivo antitumor efficacy of combination treatment. RESULTS: We found that PRMT5 depletion increased PP2A activity in GBMNS. LB100 treatment significantly reduced the viability of PRMT5-depleted GBMNS compared to PRMT5-intact GBMNS. LB100 enhanced G1 cell cycle arrest induced by PRMT5 depletion. Combination therapy also increased the expression of phospho-MLKL. Necrostatin-1 rescued PRMT5-depleted cells from the cytotoxic effects of LB100, indicating that necroptosis caused the enhanced cytotoxicity of combination therapy. In the in vivo mouse tumor xenograft model, LB100 treatment combined with transient depletion of PRMT5 significantly decreased tumor size and prolonged survival, while LB100 treatment alone had no survival benefit. CONCLUSION: Overall, combined PRMT5 and PP2A inhibition had significantly greater antitumor effects than PRMT5 inhibition alone.


Subject(s)
Glioblastoma , Animals , Cell Line, Tumor , Glioblastoma/drug therapy , Humans , Mice , Piperazines , Protein Phosphatase 2 , Protein-Arginine N-Methyltransferases/genetics , Xenograft Model Antitumor Assays
3.
Sci Rep ; 10(1): 11003, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32620877

ABSTRACT

Preclinical models that reliably recapitulate the immunosuppressive properties of human gliomas are essential to assess immune-based therapies. GL261 murine glioma cells are widely used as a syngeneic animal model of glioma, however, it has become common practice to transfect these cells with luciferase for fluorescent tumor tracking. The aim of this study was to compare the survival of mice injected with fluorescent or non-fluorescent GL261 cells and characterize the differences in their tumor microenvironment. Mice were intracranially implanted with GL261, GL261 Red-FLuc or GL261-Luc2 cells at varying doses. Cytokine profiles were evaluated by proteome microarray and Kaplan-Meier survival analysis was used to determine survival differences. Median survival for mice implanted with 5 × 104 GL261 cells was 18 to 21 days. The GL261 Red-FLuc implanted mice cells did not reach median survival at any tumor dose. Mice injected with 3 × 105 GL261-Luc2 cells reached median survival at 23 days. However, median survival was significantly prolonged to 37 days in mice implanted with 5 × 104 GL261-Luc2 cells. Additionally, proteomic analyses revealed significantly elevated inflammatory cytokines in the supernatants of the GL261 Red-FLuc cells and GL261-Luc2 cells. Our data suggest that GL261 Red-FLuc and GL261-Luc2 murine models elicit an anti-tumor immune response by increasing pro-inflammatory modulators.


Subject(s)
Brain Neoplasms/metabolism , Cytokines/metabolism , Glioma/metabolism , Luciferases/immunology , Up-Regulation , Animals , Cell Line, Tumor , Cell Survival , Female , Gene Expression Regulation, Neoplastic , Kaplan-Meier Estimate , Luciferases/genetics , Mice , Neoplasm Transplantation , Proteomics/methods , Tumor Microenvironment
4.
J Immunother Cancer ; 8(1)2020 05.
Article in English | MEDLINE | ID: mdl-32474411

ABSTRACT

Immunotherapy is a promising new therapeutic field that has demonstrated significant benefits in many solid-tumor malignancies, such as metastatic melanoma and non-small cell lung cancer. However, only a subset of these patients responds to treatment. Glioblastoma (GBM) is the most common malignant primary brain tumor with a poor prognosis of 14.6 months and few treatment advancements over the last 10 years. There are many clinical trials testing immune therapies in GBM, but patient responses in these studies have been highly variable and a definitive benefit has yet to be identified. Biomarkers are used to quantify normal physiology and physiological response to therapies. When extensively characterized and vigorously validated, they have the potential to delineate responders from non-responders for patients treated with immunotherapy in malignancies outside of the central nervous system (CNS) as well as GBM. Due to the challenges of current modalities of radiographic diagnosis and disease monitoring, identification of new predictive and prognostic biomarkers to gauge response to immune therapy for patients with GBM will be critical in the precise treatment of this highly heterogenous disease. This review will explore the current and future strategies for the identification of potential biomarkers in the field of immunotherapy for GBM, as well as highlight major challenges of adapting immune therapy for CNS malignancies.


Subject(s)
Biomarkers/metabolism , Brain Neoplasms/immunology , Glioblastoma/immunology , Immunotherapy/methods , Brain Neoplasms/pathology , Glioblastoma/pathology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...