Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-30783000

ABSTRACT

Identifying and understanding potential drug-drug interactions (DDIs) are vital for the treatment of human immunodeficiency virus type 1 (HIV-1) infection. This article discusses DDIs between doravirine, a nonnucleoside reverse transcriptase inhibitor (NNRTI), and cytochrome P450 3A (CYP3A) substrates and drugs that modulate CYP3A activity. Consistent with previously published in vitro data and DDI trials with the CYP3A substrates midazolam and atorvastatin, doravirine did not have any meaningful impact on the pharmacokinetics of the CYP3A substrates ethinyl estradiol and levonorgestrel. Coadministration of doravirine with CYP3A inhibitors (ritonavir or ketoconazole) increased doravirine exposure approximately 3-fold. However, these increases were not considered clinically meaningful. Conversely, previously published trials showed that coadministered CYP3A inducers (rifampin and rifabutin) decreased doravirine exposure by 88% and 50%, respectively (K. L. Yee, S. G. Khalilieh, R. I. Sanchez, R. Liu, et al., Clin Drug Investig 37:659-667, 2017 [https://doi.org/10.1007/s40261-017-0513-4]; S. G. Khalilieh, K. L. Yee, R. I. Sanchez, R. Liu, et al., J Clin Pharmacol 58:1044-1052, 2018 [https://doi.org/10.1002/jcph.1103]), while doravirine exposure following prior efavirenz administration led to an initial reduction in doravirine exposure of 62%, but the reduction became less pronounced with time (K. L. Yee, R. I. Sanchez, P. Auger, R. Liu, et al., Antimicrob Agents Chemother 61:e01757-16, 2017 [https://doi.org/10.1128/AAC.01757-16]). Overall, the coadministration of doravirine with CYP3A inhibitors and substrates is, therefore, supported by these data together with efficacy and safety data from clinical trials, while coadministration with strong CYP3A inducers, such as rifampin, cannot be recommended. Concomitant dosing with rifabutin (a CYP3A inducer less potent than rifampin) is acceptable if doravirine dosing is adjusted from once to twice daily; however, the effect of other moderate inducers on doravirine pharmacokinetics is unknown.


Subject(s)
Cytochrome P-450 CYP3A Inhibitors/pharmacokinetics , Cytochrome P-450 CYP3A/metabolism , Pyridones/pharmacokinetics , Triazoles/pharmacokinetics , Adolescent , Adult , Aged , Alkynes , Benzoxazines/pharmacokinetics , Cyclopropanes , Drug Interactions , Female , Humans , Ketoconazole/pharmacokinetics , Male , Middle Aged , Ritonavir/pharmacokinetics , Young Adult
2.
Anticancer Res ; 24(5A): 2765-71, 2004.
Article in English | MEDLINE | ID: mdl-15517883

ABSTRACT

This study was initiated to determine if potential PPAR gamma antagonists could block the inhibition of cell proliferation caused by 4-phenylbutyrate. The action of 4-phenylbutyrate differed from other PPAR gamma ligands examined in that it induces histone acetylation. Proliferation of DS19 mouse erythroleukemia cells was inhibited by PPAR gamma agonists (4-phenylbutyrate, rosiglitazone, ciglitazone and GW1929) and by potential PPAR gamma antagonists: BADGE (Biphenol A diglycidyl ether), GW9662, PD068235 and diclofenac. Combined incubations tended to exhibit additive inhibitory effects. Potential PPAR gamma agonists and antagonists inhibited the incorporation of thymidine into DNA of human prostate (PC3), colon (Caco-2) and breast (T47D) cancer cells but also affected NIH3T3 cells that have little or no expression of PPAR gamma. Lipid accumulation in T47D cells was seen after incubation with 4-phenylbutyrate and both potential PPAR gamma agonists and antagonists. The extent to which the effects of 4-phenylbutyrate on cell proliferation are mediated through PPAR gamma or induction of histone acetylation remains an open question. We conclude that potential PPAR gamma antagonists may fail to reverse the growth inhibitory effect of PPAR gamma ligands and may themselves act as growth inhibitory agents.


Subject(s)
Growth Inhibitors/pharmacology , PPAR gamma/agonists , PPAR gamma/antagonists & inhibitors , Acetylation/drug effects , Anilides/pharmacology , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Caco-2 Cells , Cell Line, Tumor , Cell Proliferation/drug effects , Diclofenac/pharmacology , Histones/metabolism , Humans , Male , Mice , NIH 3T3 Cells , Nitro Compounds/pharmacology , Phenylbutyrates/pharmacology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Rosiglitazone , Thiazoles/pharmacology , Thiazolidinediones/pharmacology
3.
Cancer Chemother Pharmacol ; 54(1): 57-63, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15034756

ABSTRACT

PURPOSE: A structure-activity study was undertaken to determine the influence of side chain length of phenyl alkanoic acids and the degree of unsaturation of phenyl alkenoic acids on the induction of histone acetylation and inhibition of cancer cell proliferation. MATERIALS AND METHODS: Studies on cell proliferation were performed with DS19 mouse erythroleukemic cells, PC-3 human prostate cancer cells and Caco-2 human colon cancer cells. Actions on histone deacetylase and the induction of histone acetylation were compared for 4-phenylbutyrate and structurally related molecules. RESULTS: Increasing inhibition of cell proliferation by phenyl alkanoic acids together with a decrease in cells in S phase and an increase in apoptotic cells was observed with increased chain length between four and ten carbons. Introduction of double bonds into the side chain was associated with increased growth inhibition. In contrast, 4-phenylbutyrate was a more potent inhibitor of histone deacetylase and inducer of histone acetylation than the other phenyl alkanoic acids examined. CONCLUSIONS: In comparison with the action of 4-phenylbutyrate, actions other than inhibition of histone deacetylase appear to be more important for growth inhibition by longer chain phenyl alkanoic and phenyl alkenoic acids.


Subject(s)
Cell Division/drug effects , Colonic Neoplasms/pathology , Histones/metabolism , Phenylbutyrates/pharmacology , Prostatic Neoplasms/pathology , Acetylation , Animals , Apoptosis/drug effects , Cell Line , Humans , Leukemia, Erythroblastic, Acute/pathology , Male , Mice , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL