Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
AAPS PharmSciTech ; 23(5): 123, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35460060

ABSTRACT

Lovastatin (Lov) is a lipid-lowering agent, with 5% bioavailability (BA) due to extensive first pass metabolism and poor solubility. To enhance dissolution and in vivo effects, Lov solid self microemulsifying drug delivery system (SMEDDS) and liquisolid systems were developed and evaluated to select superior one. Solubilities were determined in oils, surfactants, and cosurfactants. Ternary phase diagrams were constructed and selected the one which showed maximum emulsion zone. In vitro dissolution, DSC, SEM and PXRD studies were used to characterize the developed formulations. In vivo studies were conducted on optimal formulations in wistar rats. Based on solubilities, Capmul PG8 and Capmul MCM were preferred as oils, Labrasol and Transcutol P as surfactant and cosurfactant. Here, Syloid XDP carrier showed better adsorption capacity among others, hence was used in optimal solid SMEDDS (SX) and liquisolid (LS) formulations. Dissolution study results showed significant improvement in release when compared to pure drug. DSC, SEM, and PXRD results indicated the loss of drug crystallinity in optimal formulations. In pharmacokinetic (PK) study, SX and LS showed 2.57 and 1.43 fold improvements in AUC, when compared to that of coarse suspension (CS). In pharmacodynamic (PD) study, hyperlipidemia was induced by Triton X-100. CS and LS treatments showed a decline in hyperlipidemic levels at 4 h. But, SX-treated group showed early onset of decline at 2 h. Further, the duration of anti-hyperlipidemia was at least 12 h extra when compared to CS and LS. This study confirmed the superiority of SX over LS in PK and PD effects.


Subject(s)
Excipients , Lovastatin , Administration, Oral , Animals , Biological Availability , Drug Delivery Systems/methods , Drug Liberation , Emulsions/pharmacokinetics , Oils , Rats , Solubility , Surface-Active Agents , Suspensions
2.
Drug Dev Ind Pharm ; 47(4): 618-625, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33784221

ABSTRACT

Iloperidone (IL) is practically insoluble in water and has significant first-pass metabolism, resulting in low oral bioavailability in humans (36%). IL lipid nanoemulsions (IL-LNEs) were prepared to improve oral bioavailability. IL-LNEs were formulated by hot homogenization and ultrasonication method. Soybean oil and egg lecithin in various concentrations as emulsifier were used in the preparation of LNEs. Dynamic light scattering technique was used for globule size analysis. All LNE formulations showed narrow size distribution and the average globule size and Poly Dispersity Index (PDI) were found to be in between 182.2 ± 2.8 to 222.3 ± 1.9 nm and 0.200 ± 0.004 to 0.274 ± 0.005 respectively. Zeta potential values varied from -20.0 ± 0.15 to -28.9 ± 0.30 mV which indicated stability of prepared LNEs. All formulations showed good entrapment efficiency ranging from 99.07 ± 0.01 to 99.28 ± 0.01% when separated using centrisart tubes and the drug content varied from 96.99 ± 0.94 to 99.06 ± 0.36%. Physical stability testing indicated the stability of all LNEs and optimized LNE-IL4 was found stable for 3 months at both refrigerated (4 °C) and room temperature (25 °C). During in vivo studies in wistar rats, the optimized LNE showed 2.47-fold improvement in the oral bioavailability and superior (1.22-fold) pharmacodynamic activity when compared to marketed tablet suspension (Ilosure-4®) in suppressing the hyperlocomotor activity, being induced by MK-801 (Dizocilpine).


Subject(s)
Nanoparticles , Administration, Oral , Animals , Biological Availability , Isoxazoles , Lipids , Particle Size , Piperidines , Rats
3.
Drug Dev Ind Pharm ; 46(4): 587-596, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32162981

ABSTRACT

Iloperidone (ILO) is an anti-psychotic, used in schizophrenia. It has low bioavailability (36%) due to low solubility and first pass effect. Oral solid self microemulsifying drug delivery system (SMEDDS) and liquisolid compact (LSC) of ILO were developed. The hypothesis is to test in vivo performance (PK and PD effects) of these delivery systems, as both systems improve dissolution. Based on solubility Capmul MCM, Labrafac WL 1349 were selected as oils, Lauroglycol 90 and PEG 600 were selected as surfactant and cosurfactant. Syloid XDP was optimized for adsorption of liquid SMEDDS. Syloid XDP and Aerosil 200 were optimized as carrier and coating material in the ratio of 15:1 w/w for liquisolid formulation. SEM and PXRD studies indicated no specific crystallinity due to bulkiness in both formulations, which showed similar flow and release behavior. Pharmacokinetic studies were performed for ILO Coarse suspension (CS), Tablet suspension (TS), optimized solid SMEDDS (A1X) and liquisolid compact (S3) in wistar rats. About 3.80 and 2.19-fold improvements in relative bioavailabilty were found for A1X and S3, respectively, when compared to CS. In comparison to TS, 2.61 and 1.51 fold improvements in bioavailability were found for A1X and S3, respectively. Further, Pharmacodynamic activity was studied by reversal of MK-801 induced hyperlocomotion in rats. A1X and S3 formulations showed maximum reversal after 15 min when compared to CS and found to have similar performance. Thus, in comparison to S3, A1X showed significant difference in pharmacokinetic effects but similar pharmacodynamic effects.


Subject(s)
Antipsychotic Agents/administration & dosage , Drug Carriers/chemistry , Isoxazoles/administration & dosage , Locomotion/drug effects , Piperidines/administration & dosage , Administration, Oral , Animals , Antipsychotic Agents/pharmacokinetics , Biological Availability , Chemistry, Pharmaceutical , Dizocilpine Maleate/administration & dosage , Emulsions , Excipients/chemistry , Humans , Isoxazoles/pharmacokinetics , Male , Models, Animal , Particle Size , Piperidines/pharmacokinetics , Rats , Schizophrenia/drug therapy , Solubility , Surface-Active Agents/chemistry , Suspensions , Tablets
4.
Pharm Nanotechnol ; 8(2): 148-160, 2020.
Article in English | MEDLINE | ID: mdl-32096755

ABSTRACT

BACKGROUND: Zotepine (ZT) is a substituted dibenzothiepine tricyclic molecule and second generation antipsychotic drug. It is available as the parenteral and oral solid dosage form, but, orally administered ZT has a poor oral bioavailability (10%) that might be due to either poor water solubility, high lipophilicity (Log P 4) and also first-pass hepatic metabolism. OBJECTIVE: The oral bioavailability of ZT was improved by loading into a nanostructured lipid carriers (NLCs) system. METHODS: Hot homogenization with probe sonication method was used for the preparation of ZT-NLCs formulations and characterized for an optimal system based on physicochemical characteristics and in vitro release. Differential scanning calorimetry (DSC), X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM) studies were used to confirm the crystalline nature and shape of the optimized ZT-NLC formulation. The physical stability of the optimized ZT-NLC formulation was evaluated at the refrigerator and room temperature over two months. Furthermore, in vivo pharmacokinetic (PK) studies of optimized ZT-NLC and ZT coarse suspension (ZT-CS) as control formulation, were conducted in male Wistar rats. RESULTS: The optimized formulation of ZT-NLC showed Z-avg, PDI, ZP of 145.8 ± 2.5 nm, 0.18 ± 0.05, -31.6 ± 1.8 mV, respectively. In vitro release studies indicated the sustained release of ZT. DSC and XRD studies revealed the conversion of ZT into an amorphous form. SEM studies showed the spherical shape of the ZT-NLC formulation. PK studies showed 1.8-folds improvement (p<0.05) in oral bioavailability when compared with ZTCS formulation. CONCLUSION: Overall, the results established that NLCs could be used as a new alternative delivery vehicle for the oral delivery of ZT.


Subject(s)
Antipsychotic Agents/administration & dosage , Antipsychotic Agents/pharmacokinetics , Dibenzothiepins/administration & dosage , Dibenzothiepins/pharmacokinetics , Administration, Oral , Animals , Antipsychotic Agents/chemistry , Biological Availability , Dibenzothiepins/chemistry , Drug Stability , Male , Nanoparticles , Nanostructures , Particle Size , Rats , Rats, Wistar , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...