Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Domest Anim ; 59(5): e14581, 2024 May.
Article in English | MEDLINE | ID: mdl-38698693

ABSTRACT

A stop-gain mutation (rs715966442; BTA11: 1,02,463,944 nucleotide position) in transcription termination factor, RNA polymerase I (TTF1) gene causes abortion in Holstein Friesian (HF) cattle. A PCR-restriction fragment length polymorphism (PCR-RFLP)-based genetic test has been developed and validated to screen the TTF1 mutation locus in HF cattle. The mutation locus was screened in 80 HF and HF crossbreds using the protocol, which revealed two animals as carriers of the mutant TTF1 allele. The test employed is cost-effective, rapid and precise and can be utilized as an effective tool for the screening of TTF1 mutation carriers in HF cattle population.


Subject(s)
Abortion, Veterinary , Cattle Diseases , Mutation , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Animals , Cattle/genetics , Female , Abortion, Veterinary/genetics , Cattle Diseases/genetics , Cattle Diseases/diagnosis , Polymerase Chain Reaction/veterinary , Polymerase Chain Reaction/methods , Pregnancy , Genetic Testing/veterinary , Genetic Testing/methods , Transcription Factors/genetics
2.
Anim Biotechnol ; 34(9): 4851-4859, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37051916

ABSTRACT

Genome-wide deleterious mutations were identified in zebu cattle (Bos indicus) using in silico approach. The ddRAD sequence data of Sahiwal cattle were annotated and aligned with the cattle reference genome (ARS-UCD1.2). A total of 279,383 SNPs were identified at Read Depth10, which were further filtered to 692 missense SNPs. These SNPs were further analyzed, for functional consequences, by using Variant Effect Predictor, PolyPhen, PROVEAN, and PANTHER tools. A total of 18 SNPs, were finally identified as deleterious, and among these, 12 SNPs were mapped on nine different genes. ERRAT, ProSA-web, Project HOPE, TM-Align, and YASSARA tools, further confirmed the protein malfunctioning of one missense (L290V) mutation of Retinoblastoma binding protein-5 (RBBP5) gene, transcribing a cell cycle regulatory protein and associated with Retinoblastoma in human. This derived bioinformatics pipeline may be useful for preliminarily identifying the deleterious DNA mutations in livestock, specifically in absence of any genetic disease records.


Subject(s)
Genome-Wide Association Study , Genome , Cattle/genetics , Humans , Animals , Genome/genetics , Mutation , Polymorphism, Single Nucleotide/genetics , DNA-Binding Proteins/genetics
3.
Genes (Basel) ; 13(2)2022 01 28.
Article in English | MEDLINE | ID: mdl-35205299

ABSTRACT

Arunachali yak, the only registered yak breed of India, is crucial for the economic sustainability of pastoralist Monpa community. This study intended to determine the genomic diversity and to identify signatures of selection in the breed. Previously available double digest restriction-site associated DNA (ddRAD) sequencing data of Arunachali yak animals was processed and 99,919 SNPs were considered for further analysis. The genomic diversity profiled based on nucleotide diversity, π (π = 0.041 in 200 bp windows), effective population size, Ne (Ne = 83) and Runs of homozygosity (ROH) (predominance of shorter length ROHs) was found to be optimum. Subsequently, 207 regions were identified to be under selective sweeps through de-correlated composite of multiple signals (DCMS) statistic which combined three individual test statistics viz. π, Tajima's D and |iHS| in non-overlapping 100 kb windows. Mapping of these regions revealed 611 protein-coding genes including KIT, KITLG, CDH12, FGG, FGA, FGB, PDGFRA, PEAR1, STXBP3, olfactory receptor genes (OR5K3, OR5H6 and OR1E1) and taste receptor genes (TAS2R1, TAS2R3 and TAS2R4). Functional annotation highlighted that biological processes like platelet aggregation and sensory perception were the most overrepresented and the associated regions could be considered as breed-specific signatures of selection in Arunachali yak. These findings point towards evolutionary role of natural selection in environmental adaptation of Arunachali yak population and provide useful insights for pursuing genome-wide association studies in future.


Subject(s)
Genome-Wide Association Study , Selection, Genetic , Animals , Cattle/genetics , Genome/genetics , Homozygote , Polymorphism, Single Nucleotide/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...