Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Bot ; 128(3): 357-369, 2021 08 26.
Article in English | MEDLINE | ID: mdl-33949648

ABSTRACT

BACKGROUND AND AIMS: The persistence of a plant population under a specific local climatic regime requires phenotypic adaptation with underlying particular combinations of alleles at adaptive loci. The level of allele diversity at adaptive loci within a natural plant population conditions its potential to evolve, notably towards adaptation to a change in climate. Investigating the environmental factors that contribute to the maintenance of adaptive diversity in populations is thus worthwhile. Within-population allele diversity at adaptive loci can be partly driven by the mean climate at the population site but also by its temporal variability. METHODS: The effects of climate temporal mean and variability on within-population allele diversity at putatively adaptive quantitative trait loci (QTLs) were evaluated using 385 natural populations of Lolium perenne (perennial ryegrass) collected right across Europe. For seven adaptive traits related to reproductive phenology and vegetative potential growth seasonality, the average within-population allele diversity at major QTLs (HeA) was computed. KEY RESULTS: Significant relationships were found between HeA of these traits and the temporal mean and variability of the local climate. These relationships were consistent with functional ecology theory. CONCLUSIONS: Results indicated that temporal variability of local climate has likely led to fluctuating directional selection, which has contributed to the maintenance of allele diversity at adaptive loci and thus potential for further adaptation.


Subject(s)
Climate Change , Lolium , Selection, Genetic , Adaptation, Physiological/genetics , Alleles , Genetics, Population , Lolium/genetics , Phenotype , Quantitative Trait Loci
2.
Animal ; 1(8): 1122-5, 2007 Sep.
Article in English | MEDLINE | ID: mdl-22444857

ABSTRACT

Whole-plant winter cereals could be of great interest if used as silages for ruminant feeding as opposed to summer crops in that they would spare water resources or valorize low-input management. This study aimed to compare the feeding value of rye, barley, wheat (two genotypes) and triticale (six genotypes). The cereals were sown in October and harvested as silage in June. Forages were offered to Texel castrated sheep in order to evaluate the organic matter digestibility (OMd). The OMd of the wheat cultivars was higher (61.6%, P<0.05) than those of barley (57.2%) and rye (54.7%) but no different from that of triticale (60.6%). Within the triticale genotypes, OMd ranged from 54.7 to 62.3%. The presence of rough barbs should explain the relatively low intake of the cereals with the exception of wheat. Winter cereals provide good-quality forage for feeding ruminants. Wheat has a higher nutritional value than barley and rye and a wide variability for digestibility seems to exist within the triticale cultivars. Such variability in a species known for its ability to be cropped under limiting conditions should be explored in much greater depth as it could result in providing farmers with genotypes of good quality with an acceptable yield at a lower cost.

3.
J Dairy Sci ; 84(8): 1863-71, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11518312

ABSTRACT

A genetically modified Bt176 corn hybrid (Rh208Bt)--providing control of European corn borer damage--and the conventional isogenic hybrid (Rh208)--harvested as whole plant silage--were evaluated in three separate feeding trials to verify that the in vivo feeding value was substantially equivalent among modified and conventional hybrids. In the first trial, after a week of preexperiment, two sets of six Texel sheep, housed in digestibility crates, were fed silage sources of Rh208 and Rh208Bt hybrids, and silage of three additional control varieties of low, intermediate, and high feeding value (Rh289, Adonis, and Adonis bm3) for 1 wk. Feed offered to sheep was adjusted to maintenance requirements based on metabolic body weight. Agronomic and biochemical traits were similar among the Rh208 and Rh208Bt hybrids. Organic matter digestibility (67.1 and 67.6%), crude fiber digestibility (52.9 and 54.2%), and neutral detergent fiber digestibility (50.2 and 49.0%) were not significantly different among Rh208 and Rh208Bt hybrids. In the second trial, two sets of 24 Holstein cows were fed silage from Rh208 and Rh208Bt corn hybrids for 13 wk, 9 wk after calving, and including 2 wk of preexperiment. Fat-corrected milk yield (31.3 and 31.4 kg/d), protein content (31.7 and 31.6 g/kg) and fat content (36.7 and 37.0 g/kg) in milk of dairy cows were unaffected by hybrid source. Body weight gains of cattle were not different. However, intake was significantly higher in cows fed Rh208Bt silage. In the third trial, five midlactation multiparous Holstein cows were successively fed the silage from Rh208 and Rh208Bt corn hybrids 2 or 3 wk. Data were considered only for the last week of each period. There were no significant effects on protein fractions, fatty acid composition, or coagulation properties of milk between Rh208 and Rh208Bt fed cattle. Cattle and sheep can perform equally well with a conventional or a genetically modified Bt176 corn silage.


Subject(s)
Cattle/physiology , Lactation/physiology , Milk/chemistry , Sheep/physiology , Zea mays/genetics , Animal Feed , Animals , Cheese , Dietary Fiber/metabolism , Digestion , Eating , Female , Milk/standards , Plants, Genetically Modified , Silage , Weight Gain
SELECTION OF CITATIONS
SEARCH DETAIL
...