Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 264: 115487, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37729804

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted human-to-human via aerosols and air-borne droplets. Therefore, capturing and destroying viruses from indoor premises are essential to reduce the probability of human exposure and virus transmission. While the heating, ventilation, and air conditioning (HVAC) systems help in reducing the indoor viral load, a targeted approach is required to effectively remove SARS-CoV-2 from indoor air to address human exposure concerns. The present study demonstrates efficient trapping and destruction of SARS-CoV-2 via nano-enabled filter technology using the UV-A-stimulated photoelectrochemical oxidation (PECO) process. Aerosols containing SARS-CoV-2 were generated by nebulization inside an air-controlled test chamber where an air purifier (Air Mini+) was placed. The study demonstrated the efficient removal of SARS-CoV-2 (99.98 %) from the test chamber in less than two minutes and PECO-assisted destruction (over 99%) on the filtration media in 1 h. Furthermore, in a real-world scenario, the Molekule Air-Pro air purifier removed SARS-CoV-2 (a negative RT-qPCR result post-running the filter device) from the circulating air in a COVID-19 testing facility. Overall, the ability of two FDA-approved class II medical devices, Molekule Air-Mini+ and Air-Pro air purifiers, to remove and destroy SARS-CoV-2 in indoor settings was successfully demonstrated. The study indicates that as the "tripledemic" of COVID-19, influenza, and respiratory syncytial virus (RSV) overwhelm the healthcare facilities in the USA, the use of a portable air filtration device will help contain the spread of the viruses in close door facilities, such as in schools and daycare facilities.


Subject(s)
Air Filters , Air Pollution, Indoor , COVID-19 , Humans , SARS-CoV-2 , COVID-19 Testing , Respiratory Aerosols and Droplets , Air Pollution, Indoor/prevention & control
2.
Sci Rep ; 13(1): 10980, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37414804

ABSTRACT

Portable air purifiers help improve indoor air quality by neutralizing allergens, including animal dander proteins. However, there are limited in-vivo models to assess the efficacy of these devices. Here, we developed a novel animal model of experimental asthma using aerosolized cat dander extract (CDE) exposure and compared the efficacy of select air purification technologies. Mice were exposed to CDE aerosols for 6 weeks in separate custom-built whole-body exposure chambers equipped with either a photoelectrochemical oxidative (PECO) Molekule filtration device (PFD) or a HEPA-assisted air filtration device (HFD) along with positive (a device with no filtration capability) and negative controls. Compared to the positive control group, the CDE-induced airway resistance, and plasma IgE and IL-13 levels were significantly reduced in both air purifier groups. However, PFD mice showed a better attenuation of lung tissue mucous hyperplasia and eosinophilia than HFD and positive control mice, indicating a better efficacy in managing CDE-induced allergic responses. Cat dander protein destruction was evaluated by LCMS proteomic analysis, which revealed the degradation of 2731 unique peptides on PECO media in 1 h. Thus, allergen protein destruction on filtration media enhances air purifier efficacy that could provide relief from allergy responses compared to traditional HEPA-based filtration alone.


Subject(s)
Air Pollution, Indoor , Asthma , Hypersensitivity , Mice , Animals , Disease Models, Animal , Dander/metabolism , Proteomics , Hypersensitivity/metabolism , Allergens
3.
J Appl Ecol ; 57(6): 1078-1088, 2020 Jun.
Article in English | MEDLINE | ID: mdl-33071307

ABSTRACT

Identifying the mechanisms underlying biological invasions can inform the management of invasive species. The enemy release hypothesis (ERH) suggests that invasive species have a competitive advantage in their introduced range because they leave behind many of their predators and parasites from their native range, allowing them to shift resources from defenses to growth, reproduction, and dispersal. Many studies have demonstrated that invasive species have fewer parasites than their native counterparts, but few studies have tested whether the loss of these natural enemies appears to be a primary driver of the invasion process.To test the ERH, we conducted a mark-recapture study in which we used an anthelmintic drug to successfully reduce parasitic worms in invasive Cuban treefrogs (Osteopilus septentrionalis) and native treefrogs (Hyla spp.) at half of 12 wetlands, marking nearly 4,200 frogs. If the ERH is supported, we would expect that treating for parasitic worms would have a greater benefit to native than invasive hosts.Growth and survival rates of invasive and native treefrogs responded similarly to the anthelmintic treatment, suggesting that the Cuban treefrog's release from parasitic worms does not appear to significantly contribute to its invasiveness in established areas. Instead, it appears that the overall faster rates of growth and maturation, higher survival rates, and larger body sizes of Cuban treefrogs that we observed may contribute to their expansion and proliferation.Synthesis and applications. Although Cuban treefrogs have a lower diversity of parasitic worms in their invasive than native range, this does not appear to significantly contribute to their invasion success in areas where they have been established for more than 20 years. This suggests that any manipulation of parasites in invasive or native hosts would not be an effective method of controlling Cuban treefrogs or reducing their impacts. Further research into other hypotheses is needed to explain the Cuban treefrog's success and help guide management actions to reduce their spread and negative impacts. Our study demonstrates that enemy release may not be a primary driver of invasiveness, highlighting the need for more experimental tests of the enemy release hypothesis to examine its generality.

SELECTION OF CITATIONS
SEARCH DETAIL
...