Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Chemistry ; 30(27): e202301687, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38466912

ABSTRACT

Spectator ions have known and emerging roles in aqueous metal-cation chemistry, respectively directing solubility, speciation, and reactivity. Here, we isolate and structurally characterize the last two metastable members of the alkali uranyl triperoxide series, the Rb+ and Cs+ salts (Cs-U1 and Rb-U1). We document their rapid solution polymerization via small-angle X-ray scattering, which is compared to the more stable Li+, Na+ and K+ analogues. To understand the role of the alkalis, we also quantify alkali-hydroxide promoted peroxide deprotonation and decomposition, which generally exhibits increasing reactivity with increasing alkali size. Cs-U1, the most unstable of the uranyl triperoxide monomers, undergoes ambient direct air capture of CO2 in the solid-state, converting to Cs4[UVIO2(CO3)3], evidenced by single-crystal X-ray diffraction, transmission electron microscopy, and Raman spectroscopy. We have attempted to benchmark the evolution of Cs-U1 to uranyl tricarbonate, which involves a transient, unstable hygroscopic solid that contains predominantly pentavalent uranium, quantified by X-ray photoelectron spectroscopy. Powder X-ray diffraction suggests this intermediate state contains a hydrous derivative of CsUVO3, where the parent phase has been computationally predicted, but not yet synthesized.

2.
Inorg Chem ; 62(51): 21036-21043, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38038352

ABSTRACT

Reported is the synthesis, crystal structure, and solid-state characterization of a new americium containing metal-organic framework (MOF), [Am(C9H3O6)(H2O)], MOF-76(Am). This material is constructed from Am3+ metal centers and 1,3,5-tricarboxylic acid (BTC) ligands, forming a porous three-dimensional framework that is isostructural with several known trivalent lanthanide (Ln) analogs (e.g., Ce, Nd, and Sm-Lu). The Am3+ ions have seven coordinates and assume a distorted, capped trigonal prismatic geometry with C1 symmetry. The Am3+-O bonds were studied via infrared spectroscopy and compared to several MOF-76(Ln) analogs, where Ln = Nd3+, Eu3+, Tb3+, and Ho3+. The results show that the strength of the ligand carboxylate stretching and bending modes increase with Nd3+ < Eu3+ < Am3+ < Tb3+ < Ho3+, suggesting the metal-oxygen bonds are predominantly ionic. Optical absorbance spectroscopy measurements reveal strong f-f transitions; some exhibit pronounced crystal field splitting. The photoluminescence spectrum contains weak Am3+-based emission that is achieved through direct and indirect metal center excitation. The weak emissive behavior is somewhat surprising given that ligand-to-metal resonance energy transfer is efficient in the isoelectronic Eu3+ (4f6) and related Tb3+ (4f8) analogs. The optical properties were explored further within a series of heterometallic MOF-76(Tb1-xAmx) (x = 0.8, 0.2, and 0.1) samples, and the results reveal enhanced Am3+ photoluminescence.

3.
Chemistry ; 29(41): e202300077, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-36973189

ABSTRACT

We report the structural, vibrational, and optical properties of americium formate (Am(CHO2 )3 ) crystals synthesized via the in situ hydrolysis of dimethylformamide (DMF). The coordination polymer features Am3+ ions linked by formate ligands into a three-dimensional network that is isomorphous to several lanthanide analogs, (e. g., Eu3+ , Nd3+ , Tb3+ ). Structure determination revealed a nine-coordinate Am3+ metal center that features a unique local C3v symmetry. The metal-ligand bonding interactions were investigated by vibrational spectroscopy, natural localized molecular orbital calculations, and the quantum theory of atoms in molecules. The results paint a predominantly ionic bond picture and suggest the metal-oxygen bonds increase in strength from Nd-O

4.
Inorg Chem ; 62(12): 4814-4822, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36920249

ABSTRACT

A novel actinide-containing coordination polymer, [Am(C2O4)(H2O)3Cl] (Am-1), has been synthesized and structurally characterized. The crystallographic analysis reveals that the structure is two-dimensional and comprised of pseudo-dimeric Am3+ nodes that are bridged by oxalate ligands to form sheets. Each metal center is nine-coordinate, forming a distorted capped square antiprism geometry with a C1 symmetry, and features bound oxalate, aqua, and chloro ligands. The Am3+-ligand bonds were probed computationally using the quantum theory of atoms in molecules nd natural localized molecular orbital approaches to investigate the underlying mechanisms and hybrid atomic orbital contributions therein. The analyses indicate that the bonds within Am-1 are predominantly ionic and the 5f shell of the Am3+ metal centers does not add a significant covalent contribution to the bonds. Our bonding assessment is supported by measurements on the optical properties of Am-1 using diffuse reflectance and photoluminescence spectroscopies. The position of the principal absorption band at 507 nm (5L6' ← 7F0') is notable because it is consistent with previously reported americium oxalate complexes in solution, indicating similarities in the electronic structure and ionic bonding. Compound Am-1 is an active phosphor, featuring strong bright-blue oxalate-based luminescence with no evidence of metal-centered emission.

5.
Inorg Chem ; 61(45): 17963-17971, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36305869

ABSTRACT

We report the synthesis of five new hybrid materials containing the [PuCl6]2- anion and charge-balancing, noncovalent interaction donating 4-X-pyridinium (X = H, Cl, Br, I) cations. Single crystals of the title compounds were grown and harvested from acidic, chloride-rich, aqueous media, and their structures were determined via X-ray diffraction. Compounds 1-4, (4XPyH)2[PuCl6], and 5, (4IPyH)4[PuCl6]·2Cl, exhibit two distinct sheet-like structure types. Structurally relevant noncovalent interactions were tabulated from crystallographic data and verified computationally using electrostatic surface potential maps and the quantum theory of atoms in molecules (QTAIM). The strength of the hydrogen and halogen bonds was quantified using Kohn-Sham density functional theory, and a hierarchy of acceptor-donor pairings was established. The PuIV-Cl bonds were studied using QTAIM and natural localized molecular orbital (NLMO) analyses to delineate the underlying bond mechanism and hybrid atomic orbital contributions therein. The results of the PuIV-Cl bond analyses were compared across compositions via analogous treatments of previously reported [PuO2Cl4]2- and [PuCl3(H2O)5] molecular units. The Pu-Cl bonds are predominately ionic yet exhibit small varying degrees of covalent character that increases from [PuCl3(H2O)5] and [PuO2Cl4]2- to [PuCl6]2-, while the participation of the Pu-based s/d and f orbitals concurrently decreases and increases, respectively.

6.
ACS Appl Mater Interfaces ; 13(38): 45696-45707, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34542263

ABSTRACT

Two lanthanide-containing porous coordination polymers, [Ln2(bpdc)6(phen)2]·nH2O (1) and [Ln2(bpdc)6(terpy)2]·3H2O (2) (Ln = Pr, Nd, or Sm-Dy; bpdc: 2,2'-bipyridine-5,5'-dicarboxylic acid; phen: 1,10-phenanthroline; and terpy: 2,2':6',2″-terpyridine), have been hydrothermally synthesized and structurally characterized by powder and single-crystal X-ray diffraction. Crystallographic analyses reveal that compounds 1 and 2 feature Ln3+-containing dimeric nodes that form a porous two-dimensional (2D) and nonporous three-dimensional (3D) framework, respectively. Each material is stable in aqueous media between pH 3 and 10 and exhibits modest thermal stability up to ∼400 °C. Notably, a portion of the phen and bpdc ligands in 1 can be removed thermally, without compromising the crystal structure, causing the surface area and pore volume to increase. The optical properties of 1 and 2 with Gd3+, Sm3+, Tb3+, and Eu3+ are explored in the solid state using absorbance, fluorescence, and lifetime spectroscopies. The analyses reveal a complex blend of metal and ligand emission in the materials containing Sm3+ and Tb3+, while those featuring Eu3+ are dominated by intense metal-based emission. Compound 1 with Eu3+ shows promise for the capture and detection of the uranyl cation (UO2)2+ from aqueous media. In short, uranyl capture is observed at pH 4, and the adsorption thereof is detectable via vibrational and fluorescence spectroscopies and colorimetrically as the off-white color of 1 turns yellow with uptake. Finally, both 1 and 2 with Eu3+ produce bright red emission upon irradiation with Cu Kα X-ray radiation (8.04 keV) and are candidate materials for applications in solid-state scintillation.

7.
Chemistry ; 26(61): 13819-13825, 2020 Nov 02.
Article in English | MEDLINE | ID: mdl-33463816

ABSTRACT

A new uranyl containing metal-organic framework, RPL-1: [(UO2)2(C28H18O8)] . H2O (RPL for Radiochemical Processing Laboratory), was prepared, structurally characterized, and the solid-state photoluminescence properties explored. Single crystal X-ray diffraction data reveals the structure of RPL-1 consists of two crystallographically unique three dimensional, interpenetrating nets with a 4,3-connected tbo topology. Each net contains large pores with an average width of 22.8 Šand is formed from monomeric, hexagonal bipyramidal uranyl nodes that are linked via 1,2,4,5-tetrakis(4-carboxyphenyl)benzene (TCPB) ligands. The thermal and photophysical properties of RPL-1 were investigated using thermogravimetric analysis and absorbance, fluorescence, and lifetime spectroscopies. The material displays excellent thermal stability and temperature dependent uranyl and TCPB luminescence. The framework is stable in aqueous media and due to the large void space (constituting 76 % of the unit cell by volume) can sequester organic dyes, the uptake of which induces a visible change to the color of the material.

8.
Angew Chem Int Ed Engl ; 58(46): 16508-16511, 2019 Nov 11.
Article in English | MEDLINE | ID: mdl-31536176

ABSTRACT

The synthesis, structure, and spectroscopic characterization of the first transplutonium metal-organic framework (MOF) is described. The preparation and structure of Am-GWMOF-6, [Am2 (C6 H8 O4 )3 (H2 O)2 ][(C10 H8 N2 )], is analogous to that of the isostructural trivalent lanthanide-only containing material GWMOF-6. The presented MOF architecture is used as a platform to probe Am3+ coordination chemistry and guest-enhanced luminescent emission, whereas the framework itself provides a means to monitor the effects of self-irradiation upon crystallinity over time. Presented here is a discussion of these properties and the opportunities that MOFs provide in the structural and spectroscopic study of actinides.

9.
Inorg Chem ; 58(16): 10578-10591, 2019 Aug 19.
Article in English | MEDLINE | ID: mdl-31298847

ABSTRACT

A series of eighteen tetravalent actinide (An = Th, U, Pu) compounds were synthesized from acidic aqueous solutions containing thorium, uranium, or plutonium and a series of protonated nitrogen heterocycles. The compounds were characterized using Raman, IR, and optical absorption spectroscopies. The structures were determined using single-crystal X-ray diffraction and found to consist of [An(H2O)xCly]4-y (x = 4-7 and y = 2-4) or AnCl62- molecular units. Breaks in the structural chemistry of the early actinides were observed, with Th adopting exclusively Th-aquo-chloro species and Pu forming only PuCl62-; U crystallized as both U-aquo-chloro and UCl62-. The relationship between the solid-state structural units and the solution species was interrogated using UV-vis-near-IR absorption spectroscopy. A comparison of the solution and solid-state spectra suggested that, although prevalent in the solid state, particularly for U and Pu, AnCl62- does not exist to an appreciable extent in the reaction solution. Despite the identification of U-aquo-chloro species in solution, there are limited reports of these complexes in the solid state. Isolation of these unique actinide(IV) chlorides as reported in this work may point to the importance of nonbonding interactions in the stabilization and precipitation of AnIV structural units.

10.
Chem Commun (Camb) ; 54(85): 12014-12017, 2018 Oct 23.
Article in English | MEDLINE | ID: mdl-30295690

ABSTRACT

Four new [Pu(iv)Cln(NO3)6-n]2- (n = 0, 2, 3) and [Pu(vi)O2Cl3(NO3)]2- containing materials were crystallized from acidic, aqueous media and structurally characterized. The anions are assembled via hydrogen and halogen bonding motifs, which are rationalized computationally. The Pu-NO3 and -Cl bonds were probed using QTAIM and NLMO analyses and found to be polar and largely ionic.

11.
Chemistry ; 24(49): 12747-12756, 2018 Sep 03.
Article in English | MEDLINE | ID: mdl-29758104

ABSTRACT

Hybrid materials bearing elements from the 5f block display a rich diversity of coordination geometries, connectivities, and assembly motifs. Exemplary in this regard have been uranyl coordination polymers, which feature a wide range of secondary building units resulting from hydrolysis and oligomerization of the [UO2 ]2+ cation. An alternative approach to novel materials, however, suppresses hydrolysis and relies on non-covalent interactions (e.g. hydrogen or halogen bonding) to direct assembly of a more limited suite of species or building units. This may be achieved through the use of high-anion media to promote singular actinyl anions that are assembled with organic cations, or by way of functionalized chelating ligands that produce complexes suited for assembly through peripheral donor/acceptor sites. Presented in this Concept article is therefore an overview of our efforts in this arena. We highlight examples of each approach, share our thoughts regarding delineation of assembly criteria, and discuss the opportunities for exploring structure-property relationships in these systems.

12.
Inorg Chem ; 57(5): 2455-2471, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29436836

ABSTRACT

The synthesis and structural characterization of seven new [UO2(NCS)5]3-- and [UO2(NCS)4Cl]3--containing materials charge balanced by 4-phenylpyridinium or 4,4'-bipyridinium cations are reported. Assembly of these materials occurs via a diverse set of noncovalent interactions, with the most prevalent involving the terminal sulfur atoms, which can both accept hydrogen bonds and/or form S···S and S···Oyl interactions. The electrostatic potential of the [UO2(NCS)5]3- and [UO2(NCS)4Cl]3- anions was calculated and mapped on the 0.001 au isodensity surface to rationalize the observed assembly modes and to provide an electrostatic basis to elucidate the role of the S atoms as both donors and acceptors of noncovalent interactions. Compounds 1-7 display a range of colors (red to yellow) as well as pronounced thermochromism. A computational treatment (time-dependent density functional theory, TDDFT) of the absorbance properties supports the temperature dependence on the ratio of inter- to intramolecular ligand to metal charge transfer (LMCT) bands as obtained from UV-vis diffuse reflectance analysis. Finally, the luminescence profiles of these materials feature additional peaks atypical for most uranyl-containing materials, and a combined spectroscopic (Raman, IR, and fluorescence) and computational (harmonic frequency calculations) effort assigns these as originating from vibronic coupling between the ν1 U═O symmetric stretch and bending modes of the isothiocyanate ligands.

13.
Inorg Chem ; 57(4): 2278-2287, 2018 Feb 19.
Article in English | MEDLINE | ID: mdl-29406706

ABSTRACT

The crystal structures of americium species containing a common multifunctional phosphine oxide ligand, reported for its ability to extract f elements from acidic solutions, namely, 2,6-[Ph2P(O)CH2]2C5H3-NO, L, were finally determined after over three decades of separations studies involving these species and their surrogates. The molecular compounds Am(L)(NO3)3, Am 1:1, and [Am(L)2(NO3)][2(NO3)], Am 2:1, along with their neodymium and europium analogues, were synthesized and characterized using single-crystal X-ray crystallography, attenuated total reflectance Fourier transform infrared spectroscopy, and luminescence spectroscopy to provide a comprehensive comparison with new and known analogous complexes.

14.
Chem Commun (Camb) ; 53(78): 10816-10819, 2017 Sep 28.
Article in English | MEDLINE | ID: mdl-28926048

ABSTRACT

Crystals of a hydrated Pu(iii) chloride, (C5H5NBr)2[PuCl3(H2O)5]·2Cl·2H2O, were grown via slow evaporation from acidic aqueous, high chloride media. X-ray diffraction data reveals the neutral [PuCl3(H2O)5] tecton is assembled via charge assisted hydrogen and halogen bonds donated by 4-bromopyridinium cations and a series of inter-tecton hydrogen bonds.

15.
Chemistry ; 23(61): 15355-15369, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-28707416

ABSTRACT

Engaging the nominally terminal oxo atoms of the linear uranyl (UO22+ ) cation in non-covalent interactions represents both a significant challenge and opportunity within the field of actinide hybrid materials. An approach has been developed for promoting oxo atom participation in a range of non-covalent interactions, through judicious choice of electron donating equatorial ligands and appropriately polarizable halogen-donor atoms. As such, a family of uranyl hybrid materials was generated based on a combination of 2,5-dihalobenzoic acid and aromatic, chelating N-donor ligands. Delineation of criteria for oxo participation in halogen bonding interactions has been achieved by preparing materials containing 2,5-dichloro- (25diClBA) and 2,5-dibromobenzoic acid (25diBrBA) coupled with 2,2'-bipyridine (bipy) (1 and 2), 1,10-phenanthroline (phen) (3-5), 2,2':6',2''-terpyridine (terpy) (6-8), or 4'-chloro-2,2':6',2''-terpyridine (Cl-terpy) (9-10), which have been characterized through single crystal X-ray diffraction, Raman, Infrared (IR), and luminescence spectroscopy, as well as through density functional calculations of electrostatic potentials. Looking comprehensively, these results are compared with recently published analogues featuring 2,5-diiodobenzoic acid which indicate that although inclusion of a capping ligand in the uranyl first coordination sphere is important, it is the polarizability of the selected halogen atom that ultimately drives halogen bonding interactions with the uranyl oxo atoms.

16.
J Am Chem Soc ; 139(31): 10843-10855, 2017 08 09.
Article in English | MEDLINE | ID: mdl-28700221

ABSTRACT

Assembly of a family of 12 supramolecular compounds containing [AnO2Cl4]2- (An = U, Np, Pu), via hydrogen and halogen bonds donated by substituted 4-X-pyridinium cations (X = H, Cl, Br, I), is reported. These materials were prepared from a room-temperature synthesis wherein crystallization of unhydrolyzed and valence-pure [An(VI)O2Cl4]2- (An = U, Np, Pu) tectons is the norm. We present a hierarchy of assembly criteria based on crystallographic observations and subsequently quantify the strengths of the non-covalent interactions using Kohn-Sham density functional calculations. We provide, for the first time, a detailed description of the electrostatic potentials of the actinyl tetrahalide dianions and reconcile crystallographically observed structural motifs and non-covalent interaction acceptor-donor pairings. Our findings indicate that the average electrostatic potential across the halogen ligands (the acceptors) changes by only ∼2 kJ mol-1 across the AnO22+ series, indicating that the magnitude of the potential is independent of the metal center. The role of the cation is therefore critical in directing structural motifs and dictating the resulting hydrogen and halogen bond strengths, the former being stronger due to the positive charge centralized on the pyridyl nitrogen, N-H+. Subsequent analyses using the quantum theory of atoms in molecules and natural bond orbital approaches support this conclusion and highlight the structure-directing role of the cations. Whereas one can infer that Columbic attraction is the driver for assembly, the contribution of the non-covalent interaction is to direct the molecular-level arrangement (or disposition) of the tectons.

SELECTION OF CITATIONS
SEARCH DETAIL
...