Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 15(10)2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37896230

ABSTRACT

One major problem with the overuse of antibiotics is that the microorganisms acquire resistance; thus the dose must be increased unsustainably. To overcome this problem, researchers from around the world are actively investigating new types of antimicrobials. Zinc oxide (ZnO) nanoparticles (NPs) have been proven to exhibit strong antimicrobial effects; moreover, the Food and Drugs Administration (FDA) considers ZnO as GRAS (generally recognized as safe). Many essential oils have antimicrobial activity and their components do not generate resistance over time. One of the drawbacks is the high volatility of some components, which diminishes the antimicrobial action as they are eliminated. The combination of ZnO NPs and essential oils can synergistically produce a stronger antimicrobial effect, and some of the volatile compounds can be retained on the nanoparticles' surface, ensuring a better-lasting antimicrobial effect. The samples were characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), and thermal analysis (TG-DSC) coupled with analysis of evolved gases using FTIR. The ZnO NPs, with a size of ~35 nm, exhibited a loading between 1.44% and 15.62%-the lower values were specific for limonene-containing oils (e.g., orange, grapefruit, bergamot, or limette), while high values were obtained from cinnamon, minzol, thyme, citronella, and lavender oils-highlighting differences among non-polar terpenes and alcohol or aldehyde derivatives. The antibacterial assay indicated the existence of a synergic action among components and a high dependency on the percentage of loaded oil. Loaded nanoparticles offer immense potential for the development of materials with specific applications, such as wound dressings or food packaging. These nanoparticles can be utilized in scenarios where burst delivery is desired or when prolonged antibacterial activity is sought.

2.
Pharmaceutics ; 14(12)2022 Dec 18.
Article in English | MEDLINE | ID: mdl-36559334

ABSTRACT

Zinc oxide (ZnO) nanomaterials are used in various health-related applications, from antimicrobial textiles to wound dressing composites and from sunscreens to antimicrobial packaging. Purity, surface defects, size, and morphology of the nanoparticles are the main factors that influence the antimicrobial properties. In this study, we are comparing the properties of the ZnO nanoparticles obtained by solvolysis using a series of alcohols: primary from methanol to 1-hexanol, secondary (2-propanol and 2-butanol), and tertiary (tert-butanol). While the synthesis of ZnO nanoparticles is successfully accomplished in all primary alcohols, the use of secondary or tertiary alcohols does not lead to ZnO as final product, underlining the importance of the used solvent. The shape of the obtained nanoparticles depends on the alcohol used, from quasi-spherical to rods, and consequently, different properties are reported, including photocatalytic and antimicrobial activities. In the photocatalytic study, the ZnO obtained in 1-butanol exhibited the best performance against methylene blue (MB) dye solution, attaining a degradation efficiency of 98.24%. The comparative study among a series of usual model dyes revealed that triarylmethane dyes are less susceptible to photo-degradation. The obtained ZnO nanoparticles present a strong antimicrobial activity on a broad range of microorganisms (bacterial and fungal strains), the size and shape being the important factors. This permits further tailoring for use in medical applications.

3.
Nanomaterials (Basel) ; 9(9)2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31443424

ABSTRACT

Luminescent europium-doped hydroxylapatite (EuXHAp) nanomaterials were successfully obtained by co-precipitation method at low temperature. The morphological, structural and optical properties were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR), UV-Vis and photoluminescence (PL) spectroscopy. The cytotoxicity and biocompatibility of EuXHAp were also evaluated using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)) assay, oxidative stress assessment and fluorescent microscopy. The results reveal that the Eu3+ has successfully doped the hexagonal lattice of hydroxylapatite. By enhancing the optical features, these EuXHAp materials demonstrated superior efficiency to become fluorescent labelling materials for bioimaging applications.

4.
Molecules ; 21(1): E115, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26805790

ABSTRACT

The aim of this study was to develop, characterize and assess the biological activity of a new regenerative 3D matrix with antimicrobial properties, based on collagen (COLL), hydroxyapatite (HAp), ß-cyclodextrin (ß-CD) and usnic acid (UA). The prepared 3D matrix was characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Microscopy (FT-IRM), Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD). In vitro qualitative and quantitative analyses performed on cultured diploid cells demonstrated that the 3D matrix is biocompatible, allowing the normal development and growth of MG-63 osteoblast-like cells and exhibited an antimicrobial effect, especially on the Staphylococcus aureus strain, explained by the particular higher inhibitory activity of usnic acid (UA) against Gram positive bacterial strains. Our data strongly recommend the obtained 3D matrix to be used as a successful alternative for the fabrication of three dimensional (3D) anti-infective regeneration matrix for bone tissue engineering.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Benzofurans/chemistry , Cell Line , Cell Survival , Collagen/chemistry , Durapatite/chemistry , Humans , Materials Testing , Microbial Sensitivity Tests , Microscopy, Electron, Transmission , Spectroscopy, Fourier Transform Infrared , Tissue Engineering , Tissue Scaffolds/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...