Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38673939

ABSTRACT

Polyglutamine (polyQ)-encoding CAG repeat expansions represent a common disease-causing mutation responsible for several dominant spinocerebellar ataxias (SCAs). PolyQ-expanded SCA proteins are toxic for cerebellar neurons, with Purkinje cells (PCs) being the most vulnerable. RNA interference (RNAi) reagents targeting transcripts with expanded CAG reduce the level of various mutant SCA proteins in an allele-selective manner in vitro and represent promising universal tools for treating multiple CAG/polyQ SCAs. However, it remains unclear whether the therapeutic targeting of CAG expansion can be achieved in vivo and if it can ameliorate cerebellar functions. Here, using a mouse model of SCA7 expressing a mutant Atxn7 allele with 140 CAGs, we examined the efficacy of short hairpin RNAs (shRNAs) targeting CAG repeats expressed from PHP.eB adeno-associated virus vectors (AAVs), which were introduced into the brain via intravascular injection. We demonstrated that shRNAs carrying various mismatches with the CAG target sequence reduced the level of polyQ-expanded ATXN7 in the cerebellum, albeit with varying degrees of allele selectivity and safety profile. An shRNA named A4 potently reduced the level of polyQ-expanded ATXN7, with no effect on normal ATXN7 levels and no adverse side effects. Furthermore, A4 shRNA treatment improved a range of motor and behavioral parameters 23 weeks after AAV injection and attenuated the disease burden of PCs by preventing the downregulation of several PC-type-specific genes. Our results show the feasibility of the selective targeting of CAG expansion in the cerebellum using a blood-brain barrier-permeable vector to attenuate the disease phenotype in an SCA mouse model. Our study represents a significant advancement in developing CAG-targeting strategies as a potential therapy for SCA7 and possibly other CAG/polyQ SCAs.


Subject(s)
Ataxin-7 , Dependovirus , Disease Models, Animal , Peptides , Phenotype , RNA, Small Interfering , Spinocerebellar Ataxias , Trinucleotide Repeat Expansion , Animals , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/therapy , Spinocerebellar Ataxias/metabolism , Peptides/genetics , Dependovirus/genetics , Mice , Ataxin-7/genetics , Ataxin-7/metabolism , Trinucleotide Repeat Expansion/genetics , RNA, Small Interfering/genetics , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Purkinje Cells/metabolism , Purkinje Cells/pathology , Mice, Transgenic , Cerebellum/metabolism , Cerebellum/pathology , Humans , Genetic Therapy/methods , Alleles
2.
BMC Biol ; 21(1): 17, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36726088

ABSTRACT

BACKGROUND: The majority of genes in the human genome is present in two copies but the expression levels of both alleles is not equal. Allelic imbalance is an aspect of gene expression relevant not only in the context of genetic variation, but also to understand the pathophysiology of genes implicated in genetic disorders, in particular, dominant genetic diseases where patients possess one normal and one mutant allele. Polyglutamine (polyQ) diseases are caused by the expansion of CAG trinucleotide tracts within specific genes. Spinocerebellar ataxia type 3 (SCA3) and Huntington's disease (HD) patients harbor one normal and one mutant allele that differ in the length of CAG tracts. However, assessing the expression level of individual alleles is challenging due to the presence of abundant CAG repeats in the human transcriptome, which make difficult the design of allele-specific methods, as well as of therapeutic strategies to selectively engage CAG sequences in mutant transcripts. RESULTS: To precisely quantify expression in an allele-specific manner, we used SNP variants that are linked to either normal or CAG expanded alleles of the ataxin-3 (ATXN3) and huntingtin (HTT) genes in selected patient-derived cell lines. We applied a SNP-based quantitative droplet digital PCR (ddPCR) protocol for precise determination of the levels of transcripts in cellular and mouse models. For HD, we showed that the process of cell differentiation can affect the ratio between endogenous alleles of HTT mRNA. Additionally, we reported changes in the absolute number of the ATXN3 and HTT transcripts per cell during neuronal differentiation. We also implemented our assay to reliably monitor, in an allele-specific manner, the silencing efficiency of mRNA-targeting therapeutic approaches for HD. Finally, using the humanized Hu128/21 HD mouse model, we showed that the ratio of normal and mutant HTT transgene expression in brain slightly changes with the age of mice. CONCLUSIONS: Using allele-specific ddPCR assays, we observed differences in allele expression levels in the context of SCA3 and HD. Our allele-selective approach is a reliable and quantitative method to analyze low abundant transcripts and is performed with high accuracy and reproducibility. Therefore, the use of this approach can significantly improve understanding of allele-related mechanisms, e.g., related with mRNA processing that may be affected in polyQ diseases.


Subject(s)
Repressor Proteins , Trinucleotide Repeat Expansion , Humans , Mice , Animals , Alleles , Ataxin-3/genetics , Ataxin-3/metabolism , Reproducibility of Results , Trinucleotide Repeat Expansion/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Huntingtin Protein/genetics , Repressor Proteins/genetics
3.
Front Mol Neurosci ; 15: 947490, 2022.
Article in English | MEDLINE | ID: mdl-36176957

ABSTRACT

Adeno-associated virus (AAV)-based brain gene therapies require precision without off-targeting of unaffected neurons to avoid side effects. The cerebellum and its cell populations, including granule and Purkinje cells, are vulnerable to neurodegeneration; hence, conditions to deliver the therapy to specific cell populations selectively remain challenging. We have investigated a system consisting of the AAV serotypes, targeted injections, and transduction modes (direct or retrograde) for targeted delivery of AAV to cerebellar cell populations. We selected the AAV-PHP.eB and AAVrh10 serotypes valued for their retrograde features, and we thoroughly examined their cerebellar transduction pattern when injected into lobules and deep cerebellar nuclei. We found that AAVrh10 is suitable for the transduction of neurons in the mode highly dependent on placing the virus at axonal terminals. The strategy secures selective transduction for granule cells. The AAV-PHP.eB can transduce Purkinje cells and is very selective for the cell type when injected into the DCN at axonal PC terminals. Therefore, both serotypes can be used in a retrograde mode for selective transduction of major neuronal types in the cerebellum. Moreover, our in vivo transduction strategies are suitable for pre-clinical protocol development for gene delivery to granule cells by AAVrh10 and Purkinje cells by AAV-PHPeB.

4.
BioTechnologia (Pozn) ; 102(4): 473-478, 2021.
Article in English | MEDLINE | ID: mdl-36605599

ABSTRACT

Adeno-associated virus (AAV) vectors delivered at the axonal terminals can be retrogradely transported toward neuronal cell bodies throughout the axons. This retrograde phenomenon can serve as a powerful tool for experiments and gene therapy using AAVs. The advantages of using AAV vectors delivered retrogradely are greater cellular specificity, high transduction efficiency, increased safety, and absence of cytotoxicity. The numerous axonal projections in the nervous system provide a neuronal network for the convenient and widespread distribution of viral vectors between adjacent brain structures and over long distances. The retrograde efficiency of AAVs in the neurons of the central nervous system (CNS) depends on AAV serotype, the region of injection, and the type of neurons. In this review, we describe AAV serotypes and their retrograde transport properties after injection and discuss brain structures or types of cells that are targeted for retrograde transport. In particular, AAV serotypes 2, 5, 8, 9, rh10, and PHP.eB are extensively reviewed as they demonstrate retrograde transport potential suitable for use in gene therapy applications.

5.
Acta Vet Scand ; 58(1): 28, 2016 May 04.
Article in English | MEDLINE | ID: mdl-27146669

ABSTRACT

BACKGROUND: Research has revealed the presence of somatic mutations in mitochondrial DNA (mtDNA) of certain types of tumours. As this has not been studied for canine mast cell tumours, the aim of this study was to identify mutations in the hypervariable region of mtDNA in mast cell tumours in dogs and determine their association with the process of neoplastic transformation. RESULTS: Samples from 17 dogs with histopathologically confirmed mast cell tumours were analysed. The samples consisted of tumour tissues (n = 17), normal tissues (n = 17), and blood (n = 17). Amplicons of the displacement loop (D-loop) were sequenced and the obtained nucleotide sequences were subjected to bioinformatics analyses. Somatic mutations were detected in seven positions of the D-loop nucleotide sequences in 47 % of the dogs, while polymorphisms were identified in 94 % of the dogs. Most of these changes were homoplasmic, while heteroplasmy was detected in two individuals. Six new haplotypes were established as being characteristic for canine mast cell tumours. There was no association between the presence of the mutations and sex, haplotype, or malignancy grade assessed in 3 and 2-grade scales. CONCLUSIONS: Differences in the frequency of somatic mutations imply their direct association with the neoplastic transformation. However, their functional consequences and clinical significance are not clear. The mutations may be used for diagnosis and prognosis of canine mast cell tumours in the future.


Subject(s)
DNA, Mitochondrial/genetics , Dog Diseases/genetics , Mast Cells/pathology , Mastocytoma/veterinary , Mutation/genetics , Animals , Cell Transformation, Neoplastic/genetics , Dogs , Female , Haplotypes , Male , Mastocytoma/genetics , Polymorphism, Genetic
6.
Mitochondrial DNA ; 26(3): 452-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-24102599

ABSTRACT

The aim of the study was to identify DNA changes in mitochondrial gene fragments: NADH dehydrogenase subunit 1 (ND1), cytochrome c oxidase subunit I (COI) and cytochrome b (CYTB) in tumor tissue, normal tissue and blood, and to define their association with the tumor type in dogs. Molecular analysis included 144 tests in total. A functional effect of the non-synonymous protein coding SNP was predicted. The presence of polymorphisms in all tested gene fragments in individual tissues of dogs was observed. Heteroplasmic changes were found in ND1 and CYTB in epithelioma glandulae sebacei and in CYTB in lymphoma centroblasticum. The results of in silico analysis show the impact of these alleles (COI: 507, ND1: 450, 216, CYTB: 748) on the functioning of proteins and thus their potential role in carcinogenesis. The possible harmful effects of changes in polypeptides in positions T193N, V98M, V118M and H196P were evaluated. It seems that polymorphisms occurring in cells can have a negative impact on functioning of proteins. This promotes disorders of the energy level in cells.


Subject(s)
Cytochromes b/genetics , DNA, Mitochondrial/genetics , Electron Transport Complex IV/genetics , NADH Dehydrogenase/genetics , Neoplasms/pathology , Alleles , Animals , Base Sequence , Carcinoma/genetics , Carcinoma/pathology , Carcinoma/veterinary , DNA, Mitochondrial/isolation & purification , Dogs , Female , Lymphoma/genetics , Lymphoma/pathology , Lymphoma/veterinary , Male , Molecular Sequence Data , Neoplasms/genetics , Neoplasms/veterinary , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
7.
Mitochondrial DNA ; 25(3): 238-43, 2014 Jun.
Article in English | MEDLINE | ID: mdl-23656294

ABSTRACT

Abstract The aim of the conducted investigations was to identify differences in the D-loop nucleotide sequence between neoplastic tissue, normal tissue, and blood and to determine their correlation with the type of cancer in dogs. In 62.5% of the analyzed tumors of epithelial origin and 25% tumors of mesenchymal origin, substitution was detected within the D-loop sequence between the neoplastic tissue, normal tissue, and blood. Two mutations occurring in the carcinogenic process in position T15620C have been identified in epithelioma glandulae sebacei and carcinoma planoepithelialae keratodes. Blood and cancer heteroplasmy was diagnosed for carcinoma planoepithelialae keratodes and "Comedo" carcinoma. The results of the study indicate that polymorphic changes in the D-loop sequence promote carcinogenesis in dogs. Heteroplasmy diagnosed in blood and tumor cells and absence thereof in normal tissue may imply mtDNA recombination. High prevalence of mtDNA mutations in canine tumors may suggest mtDNA genetic instability, which is likely to play a role in carcinogenesis.


Subject(s)
DNA, Mitochondrial/genetics , Dog Diseases/genetics , Mutation , Neoplasms/genetics , Polymorphism, Genetic , Animals , DNA Mutational Analysis , DNA, Mitochondrial/chemistry , Dog Diseases/epidemiology , Dogs , Genetic Association Studies , Neoplasms/epidemiology , Neoplasms/veterinary , Nucleic Acid Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...