Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Ultrasound ; 52(5): 588-599, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38567722

ABSTRACT

Deep learning techniques have become crucial in the detection of brain tumors but classifying numerous images is time-consuming and error-prone, impacting timely diagnosis. This can hinder the effectiveness of these techniques in detecting brain tumors in a timely manner. To address this limitation, this study introduces a novel brain tumor detection system. The main objective is to overcome the challenges associated with acquiring a large and well-classified dataset. The proposed approach involves generating synthetic Magnetic Resonance Imaging (MRI) images that mimic the patterns commonly found in brain MRI images. The system utilizes a dataset consisting of small images that are unbalanced in terms of class distribution. To enhance the accuracy of tumor detection, two deep learning models are employed. Using a hybrid ResNet+SE model, we capture feature distributions within unbalanced classes, creating a more balanced dataset. The second model, a tailored classifier identifies brain tumors in MRI images. The proposed method has shown promising results, achieving a high detection accuracy of 98.79%. This highlights the potential of the model as an efficient and cost-effective system for brain tumor detection.


Subject(s)
Brain Neoplasms , Deep Learning , Magnetic Resonance Imaging , Humans , Brain Neoplasms/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Female , Male , Adult , Middle Aged , Reproducibility of Results
2.
New Gener Comput ; 40(4): 1241-1279, 2022.
Article in English | MEDLINE | ID: mdl-36101778

ABSTRACT

In this computer world, huge data are generated in several fields. Statistics in the healthcare engineering provides data about many diseases and corresponding patient's information. These data help to evaluate a huge amount of data for identifying the unknown patterns in the diseases and are also utilized for predicting the disease. Hence, this work is to plan and implement a new computer-aided technique named modified Ensemble Learning with Weighted RBM Features (EL-WRBM). Data collection is an initial process, in which the data of various diseases are gathered from UCI repository and Kaggle. Then, the gathered data are pre-processed by missing data filling technique. Then, the pre-processed data are performed by deep belief network (DBN), in which the weighted features are extracted from the RBM regions. Then, the prediction is made by ensemble learning with classifiers, namely, support vector machine (SVM), recurrent neural network (RNN), and deep neural network (DNN), in which hyper-parameters are optimized by the adaptive spreading rate-based coronavirus herd immunity optimizer (ASR-CHIO). At the end, the simulation analysis reveals that the suggested model has implications to support doctor diagnoses.

3.
Comput Math Methods Med ; 2022: 1556025, 2022.
Article in English | MEDLINE | ID: mdl-35529266

ABSTRACT

Due to the proliferation of COVID-19, the world is in a terrible condition and human life is at risk. The SARS-CoV-2 virus had a significant impact on public health, social issues, and financial issues. Thousands of individuals are infected on a regular basis in India, which is one of the populations most seriously impacted by the pandemic. Despite modern medical and technical technology, predicting the spread of the virus has been extremely difficult. Predictive models have been used by health systems such as hospitals, to get insight into the influence of COVID-19 on outbreaks and possible resources, by minimizing the dangers of transmission. As a result, the main focus of this research is on building a COVID-19 predictive analytic technique. In the Indian dataset, Prophet, ARIMA, and stacked LSTM-GRU models were employed to forecast the number of confirmed and active cases. State-of-the-art models such as the recurrent neural network (RNN), gated recurrent unit (GRU), long short-term memory (LSTM), linear regression, polynomial regression, autoregressive integrated moving average (ARIMA), and Prophet were used to compare the outcomes of the prediction. After predictive research, the stacked LSTM-GRU model forecast was found to be more consistent than existing models, with better prediction results. Although the stacked model necessitates a large dataset for training, it aids in creating a higher level of abstraction in the final results and the maximization of the model's memory size. The GRU, on the other hand, assists in vanishing gradient resolution. The study findings reveal that the proposed stacked LSTM and GRU model outperforms all other models in terms of R square and RMSE and that the coupled stacked LSTM and GRU model outperforms all other models in terms of R square and RMSE. This forecasting aids in determining the future transmission paths of the virus.


Subject(s)
Acquired Immunodeficiency Syndrome , COVID-19 , COVID-19/epidemiology , Forecasting , Humans , India/epidemiology , Pandemics , SARS-CoV-2
4.
Comput Biol Med ; 43(4): 259-67, 2013 May.
Article in English | MEDLINE | ID: mdl-23414779

ABSTRACT

We present new geometric shape and margin features for classifying mammogram mass lesions into BI-RADS shape categories: round, oval, lobular and irregular. According to Breast Imaging Reporting and Data System (BIRADS), masses can be differentiated using its shape, size and density, which is how radiologist visualizes the mammograms. Measuring regular and irregular shapes mathematically is found to be a difficult task, since there is no single measure available to differentiate various shapes. It is known that for mammograms, shape features are superior to Haralick and wavelet based features. Various geometrical shape and margin features have been introduced based on maximum and minimum radius of mass to classify the morphology of masses. These geometric features are found to be good in discriminating regular shapes from irregular shapes. In this paper, each mass is described by shape feature vector consists of 17 shape and margin properties. The masses are classified into 4 categories such as round, oval, lobular and irregular. Classifying masses into 4 categories is a very difficult task compared to classifying masses as benign, malignant or normal vs. abnormal. Only shape and margin characteristics can be used to discriminate these 4 categories effectively. Experiments have been conducted on mammogram images from the Digital Database for Screening Mammography (DDSM) and classified using C5.0 decision tree classifier. Total of 224 DDSM mammogram masses are considered for experiment. The C5.0 decision tree algorithm is used to generate simple rules, which can be easily implemented and used in fuzzy inference system as if…then…else statements. The rules are used to construct the generalized fuzzy membership function for classifying the masses as round, oval, lobular or irregular. Proposed approach is twice effective than existing Beamlet based features for classifying the mass as round, oval, lobular or irregular.


Subject(s)
Breast Neoplasms/diagnosis , Breast Neoplasms/pathology , Breast/pathology , Mammography/methods , Algorithms , Decision Trees , Early Detection of Cancer/methods , Female , Fuzzy Logic , Humans , Image Processing, Computer-Assisted/methods , Models, Theoretical , Pattern Recognition, Automated , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...