Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Prog ; 35(4): e2823, 2019 07.
Article in English | MEDLINE | ID: mdl-31017346

ABSTRACT

The rare earth metal oxide nanoparticles such as gadolinium oxide nanoparticles (Gd2 O3 NPs) have been synthesized by green synthesis process using methanolic extract of Moringa oleifera (M oleifera) peel. In this process, the Gd2 O3 NPs formation was observed at 280-300 nm in UV-Vis spectroscopy. The XRD pattern of the synthesized Gd2 O3 NPs was exactly matched with JCPDS No 3-065-3181which confirms the crystalline nature of Gd2 O3 NPs. In addition, Energy-dispersive X-ray spectroscopy (EDX) analysis was stated that Gd and O elements were present as 70.31 and 29.69%, respectively in Gd2 O3 NPs. The SEM and TEM analysis were said Gd2 O3 NPs are in rod shape and 26 ± 2 nm in size. Further the synthesized Gd2 O3 NPs were confirmed by X-ray photoemission spectroscopy (XPS). The synthesized Gd2 O3 NPs were further examined for anti-fungal activity against Alternaria saloni (A saloni) and Sclerrotium rolfsii (S rolfsii) and it showed moderate activity. Also, Gd2 O3 NPs evaluated as good antibacterial agent against different Gram +ve and Gram -ve bacteria. Moreover, the toxicity of the Gd2 O3 NPs on red blood cells (RBCs) of the human blood was determined using hemolytic assay, the obtained results were stated the synthesized Gd2 O3 NPs are nontoxic to the human erythrocytes. The photocatalytic activity against malachite green (MG) dye was tested and confirmed as 92% of dye was degraded within 2 hr by Gd2 O3 NPs. The results were stated the green synthesized Gd2 O3 NPs are good anti-fungal agents, nontoxic and we can use as a photocatalyst. Copyright © 2019 John Wiley & Sons, Ltd.


Subject(s)
Anti-Bacterial Agents/chemistry , Antifungal Agents/chemistry , Coloring Agents/chemistry , Gadolinium/chemistry , Models, Chemical , Nanoparticles/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/pharmacology , Bacteria/drug effects , Catalysis , Coloring Agents/chemical synthesis , Coloring Agents/pharmacology , Erythrocytes , Fungi/drug effects , Gadolinium/pharmacology , Green Chemistry Technology , Humans , Microbial Sensitivity Tests , Microwaves , Moringa oleifera/chemistry , Photochemical Processes , Plant Extracts/chemistry , Spectrometry, X-Ray Emission , Spectrophotometry, Ultraviolet , Surface Properties
2.
Appl Microbiol Biotechnol ; 98(12): 5289-300, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24728718

ABSTRACT

Recently, in all over the world, nanotechnology plays a major role in various applications. Most of the researchers focused their work on bimetallic nanoparticles due to their several modes or mechanisms of synthesis such as chemical, physical, and biosynthesis methods. These nanoparticles are of great interest due to their enormous applications and catalytic activities. Currently, syntheses of bimetallic nanoparticles using different sources of natural products are focused due to their advantage of being nontoxic to human and environment. To our knowledge, there is no report on the review of bimetallic nanoparticles and their medicinal applications. Taking this fact into account, we discussed the various synthesizing methods of bimetallic nanoparticles and their application related to biology.


Subject(s)
Drug Carriers/chemistry , Metal Nanoparticles/chemistry , Nanotechnology , Animals , Drug Delivery Systems/instrumentation , Drug Delivery Systems/trends , Humans , Nanotechnology/trends
SELECTION OF CITATIONS
SEARCH DETAIL
...