Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioelectrochemistry ; 110: 79-90, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27100467

ABSTRACT

This manuscript reports a new approach for the synthesis of one dimensional gold nanostructure (AuNs) and its application in the development of cholesterol biosensor. Au nanostructures have been synthesized by exploiting ß-diphenylalanine (ß-FF) as an sacrificial template, whereas the Au nanoparticles (AuNPs) were synthesized by ultrasound irradiation. X-ray diffractometer (XRD), scanning electron microscope (SEM) and energy dispersive analysis of X-rays (EDAX) have been employed to characterize the morphology and composition of the prepared samples. With the aim to develop a highly sensitive cholesterol biosensor, cholesterol oxidase (ChOx) was immobilized on AuNs which were appended on the graphite (Gr) electrode via chemisorption onto thiol-functionalized graphene oxide (GO-SH). This Gr/GO-SH/AuNs/ChOx biosensor has been characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy and chronoamperometry. CV results indicated a direct electron transfer between the enzyme and the electrode surface. A new potentiostat intermitant titration technique (PITT) has been studied to determine the diffusion coefficient and maxima potential value. The proposed biosensor showed rapid response, high sensitivity, wide linear range and low detection limit. Furthermore, our AuNs modified electrode showed excellent selectivity, repeatability, reproducibility and long term stability. The proposed electrode has also been used successfully to determine cholesterol in serum samples.


Subject(s)
Biosensing Techniques/methods , Cholesterol/analysis , Gold/chemistry , Graphite/chemistry , Metal Nanoparticles/chemistry , Nanotechnology , Oxides/chemistry , Chemistry Techniques, Synthetic , Cholesterol Oxidase/chemistry , Cholesterol Oxidase/metabolism , Electrochemistry , Electrodes , Ferricyanides/chemistry , Hydrogen-Ion Concentration , Temperature
2.
Analyst ; 139(22): 5800-12, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25208248

ABSTRACT

In this paper, a simple and innovative electrochemical hydrogen peroxide biosensor has been proposed using catalase (CATpp) derived from Pichia pastoris as bioelectrocatalyst. The model biocomponent was immobilized on gold nanoparticle nanotubes (AuNPNTs) and polythiophene composite using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide and N-hydroxysuccinimide (EDC-NHS) coupling reagent. In this present work, we have successfully synthesized gold nanoparticles (AuNPs) by ultrasonic irradiation. The tubular gold nanostructures containing coalesced AuNPs were obtained by sacrificial template synthesis. The assembly of AuNPNTs onto the graphite (Gr) electrode was achieved via S-Au chemisorption. The latter was pre-coated with electropolymerized thiophene (PTh) to enable S groups to bind AuNPNTs. The combination of AuNPNTs-PTh, i.e., an inorganic-organic hybrid, provides a stable enzyme immobilization platform. The physical morphology of the fabricated biosensor Gr/PTh/AuNPNTs/EDC-NHS/CATpp was investigated using scanning electron microscopy and energy-dispersive microscopy. The analytical performance of the bioelectrode was examined using cyclic voltammetry, differential pulse voltammetry and chronoamperometry. Operational parameters such as working potential, pH, and thermal stability of the modified electrode were examined. The beneficial analytical characteristics of the proposed electrode were demonstrated. Our results indicate that the Gr/PTh/AuNPNTs/EDC-NHS/CATpp bioelectrode exhibits a wide linear range from 0.05 mM to 18.5 mM of H2O2, fast response time of 7 s, excellent sensitivity of 26.2 mA mM(-1) cm(-2), good detection limit of 0.12 µM and good Michaelis-Menten constant of 1.4 mM. In addition, the bioelectrode displayed good repeatability, high stability and acceptable reproducibility, which can be attributed to the AuNPNTs-PTh composite that provides a biocompatible micro-environment.


Subject(s)
Catalase/metabolism , Electrodes , Enzymes, Immobilized/metabolism , Gold/chemistry , Hydrogen Peroxide/analysis , Metal Nanoparticles , Pichia/enzymology , Polymers/chemistry , Thiophenes/chemistry , Microscopy, Electron, Scanning , Spectrophotometry, Ultraviolet , X-Ray Diffraction
3.
Bioelectrochemistry ; 81(2): 104-8, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21497563

ABSTRACT

Graphene is chemically synthesized by solvothermal reduction of colloidal dispersions of graphite oxide. Graphite electrode is modified with functionalized-graphene for electrochemical applications. Electrochemical characterization of functionalized-graphene modified graphite electrode (FGGE) is carried out by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The behavior of FGGE towards ascorbic acid (AA), dopamine (DA) and uric acid (UA) has been investigated by CV, differential pulse voltammetry (DPV) and chronoamperommetry (CA). The FGGE showed excellent catalytic activity towards electrochemical oxidation of AA, DA and UA compared to that of the bare graphite electrode. The electrochemical oxidation signals of AA, DA and UA are well separated into three distinct peaks with peak potential separation of 193mv, 172mv and 264mV between AA-DA, DA-UA and AA-UA respectively in CV studies and the corresponding peak potential separations in DPV mode are 204mv, 141mv and 345mv. The FGGE is successfully used for the simultaneous detection of AA, DA and UA in their ternary mixture and DA in serum and pharmaceutical samples. The excellent electrocatalytic behavior of FGGE may lead to new applications in electrochemical analysis.


Subject(s)
Ascorbic Acid/analysis , Dielectric Spectroscopy/methods , Dopamine/analysis , Graphite/chemistry , Potentiometry/instrumentation , Uric Acid/analysis , Ascorbic Acid/blood , Ascorbic Acid/urine , Biosensing Techniques/methods , Chemistry, Analytic , Dopamine/blood , Dopamine/urine , Electrochemical Techniques , Electrodes , Equipment Design , Graphite/chemical synthesis , Oxidation-Reduction , Uric Acid/blood , Uric Acid/urine
SELECTION OF CITATIONS
SEARCH DETAIL
...