Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 12: 725572, 2021.
Article in English | MEDLINE | ID: mdl-34690967

ABSTRACT

Francisella tularensis (F. tularensis) is a Gram-negative, intracellular bacterium and the causative agent of a fatal human disease known as tularemia. The CDC has classified F. tularensis as a Tier 1 Category A select agent based on its ease of aerosolization, low infectious dose, past use as a bioweapon, and the potential to be used as a bioterror agent. Francisella has a unique replication cycle. Upon its uptake, Francisella remains in the phagosomes for a short period and then escapes into the cytosol, where the replication occurs. Francisella is recognized by cytosolic pattern recognition receptors, Absent In Melanoma 2 (Aim2) and Nacht LRR and PYD domains containing Protein 3 (Nlrp3). The recognition of Francisella ligands by Aim2 and Nlrp3 triggers the assembly and activation of the inflammasome. The mechanism of activation of Aim2 is well established; however, how Nlrp3 inflammasome is activated in response to F. tularensis infection is not known. Unlike Aim2, the protective role of Nlrp3 against Francisella infection is not fully established. This study investigated the role of Nlrp3 and the potential mechanisms through which Nlrp3 exerts its detrimental effects on the host in response to F. tularensis infection. The results from in vitro studies demonstrate that Nlrp3 dampens NF-κB and MAPK signaling, and pro-inflammatory cytokine production, which allows replication of F. tularensis in infected macrophages. In vivo, Nlrp3 deficiency results in differential expression of several genes required to induce a protective immune response against respiratory tularemia. Nlrp3-deficient mice mount a stronger innate immune response, clear bacteria efficiently with minimal organ damage, and are more resistant to Francisella infection than their wild-type counterparts. Together, these results demonstrate that Nlrp3 enhances the host's susceptibility to F. tularensis by modulating the protective innate immune responses. Collectively, this study advances our understanding of the detrimental role of Nlrp3 in tularemia pathogenesis.

2.
NPJ Vaccines ; 5(1): 23, 2020.
Article in English | MEDLINE | ID: mdl-32218995

ABSTRACT

Pfs230 is a malaria transmission-blocking antigen candidate, expressed on the surface of Plasmodium falciparum gametocytes. A recombinant, his-tagged Pfs230 fragment (Pfs230C1; amino acids 443-731) formed serum-stable particles upon incubation with liposomes containing cobalt-porphyrin-phospholipid (CoPoP). In mice, immunization with Pfs230C1, admixed with the adjuvants Alum, Montanide ISA720 or CoPoP liposomes (also containing synthetic monophosphoryl lipid A; PHAD), resulted in elicitation of IgG antibodies, but only those induced with CoPoP/PHAD or ISA720 strongly reduced parasite transmission. Immunization with micrograms of Pfs230C1 adjuvanted with identical liposomes lacking cobalt (that did not induce particle formation) or Alum was less effective than immunization with nanograms of Pfs230C1 with CoPoP/PHAD. CoPoP/PHAD and ISA720 adjuvants induced antibodies with similar Pfs230C1 avidity but higher IgG2-to-IgG1 ratios than Alum, which likely contributed to enhanced functional activity. Unlike prior work with another transmission-blocking antigen (Pfs25), Pfs230C1 was found to be effectively taken up by antigen-presenting cells without particle formation. The anti-Pfs230C1 IgG response was durable in mice for 250 days following immunization with CoPoP/PHAD, as were antibody avidity and elevated IgG2-to-IgG1 ratios. Immunization of rabbits with 20 µg Pfs230C1 admixed with CoPoP/PHAD elicited antibodies that inhibited parasite transmission. Taken together, these results show that liposomes containing CoPoP and PHAD are an effective vaccine adjuvant platform for recombinant malaria transmission blocking antigens.

3.
Front Microbiol ; 9: 1195, 2018.
Article in English | MEDLINE | ID: mdl-29922267

ABSTRACT

Francisella tularensis, the causative agent of the fatal human disease known as tularemia is classified as a Category A Select Agent by the Centers for Disease Control. No licensed vaccine is currently available for prevention of tularemia in the United States. Previously, we published that a tri-antigen tobacco mosaic virus (TMV) vaccine confers 50% protection in immunized mice against respiratory tularemia caused by F. tularensis. In this study, we refined the TMV-vaccine formulation to improve the level of protection in immunized C57BL/6 mice against respiratory tularemia. We developed a tetra-antigen vaccine by conjugating OmpA, DnaK, Tul4, and SucB proteins of Francisella to TMV. CpG was also included in the vaccine formulation as an adjuvant. Primary intranasal (i.n.) immunization followed by two booster immunizations with the tetra-antigen TMV vaccine protected 100% mice against i.n. 10LD100 challenges dose of F. tularensis live vaccine strain (LVS). Mice receiving three immunization doses of tetra-antigen TMV vaccine showed only transient body weight loss, cleared the infection rapidly, and showed minimal histopathological lesions in lungs, liver, and spleen following a lethal respiratory challenge with F. tularensis LVS. Mice immunized with the tetra-antigen TMV vaccine also induced strong ex vivo recall responses and were protected against a lethal challenge as late as 163 days post-primary immunization. Three immunization with the tetra-antigen TMV vaccine also induced a stronger humoral immune response predominated by IgG1, IgG2b, and IgG2c antibodies than mice receiving only a single or two immunizations. Remarkably, a single dose protected 40% of mice, while two doses protected 80% of mice from lethal pathogen challenge. Immunization of Interferon-gamma (IFN-γ)-deficient mice with the tetra-antigen TMV vaccine demonstrated an absolute requirement of IFN-γ for the generation of protective immune response against a lethal respiratory challenge with F. tularensis LVS. Collectively, this study further demonstrates the feasibility of TMV as an efficient platform for the delivery of multiple F. tularensis antigens and that tetra-antigen TMV vaccine formulation provides complete protection, and induces long-lasting protective and memory immune responses against respiratory tularemia caused by F. tularensis LVS.

SELECTION OF CITATIONS
SEARCH DETAIL
...