Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Indian J Med Microbiol ; 50: 100615, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38782260

ABSTRACT

BACKGROUND: Throughout the COVID-19 pandemic, virus evolution and large-scale vaccination programs have caused multiple exposures to SARS CoV-2 spike protein, resulting in complex antibody profiles. The binding of these to spike protein of "future" variants in the context of such heterogeneous exposure has not been studied. METHODS: We tested archival sera (Delta and Omicron period) stratified by anti-spike antibody (including IgG) levels for reactivity to Omicron-subvariants(BA.1, BA.2,BA.2.12.1, BA.2.75, BA.4/5 and BF.7) spike protein. Assessed antigenic distance between groups using Antigenic Cartography and performed hierarchical clustering of antibody data in a Euclidean distance framework. RESULTS: Antibody (including IgG) antibody reactivity to Wild-type (CLIA) and subvariants (ELISA) spike protein were similar between periods (p > 0.05). Both 'High S' and 'Low S' of Delta and Omicron periods were closely related to "future" subvariants by Antigenic Cartography. Sera from different S groups clustered together with 'Low S' interspersed between 'High S' on hierarchical clustering, suggesting common binding sites. Further, anti-spike antibodies (including IgG) to Wild-type (S1/S2 and Trimeric S) clustered with Omicron-subvariant binding antibodies. CONCLUSIONS: Hybrid immunity caused by cumulative virus exposure in Delta or Omicron periods resulted in equivalent binding to "future" variants, which might be due to binding to conserved regions of spike protein of future variants. A prominent finding is that the 'Low S' antibody demonstrates similar binding.

2.
Curr Stem Cell Res Ther ; 17(3): 280-293, 2022.
Article in English | MEDLINE | ID: mdl-34554904

ABSTRACT

Spinal cord injury is a devastating condition that is critically challenging and progressive, needing immediate medical attention due to its complex pathophysiology and affecting the social status and economic burden. Stem cell therapy has been the emerging therapeutic trend to treat various diseases for decades. Mesenchymal stem cells pose more advantages over other stem cells in immune-modulation, immune evasiveness, self-renewal, multipotency, etc. Due to various issues in the recent past related to allogenic transplants, ethical concerns in obtaining tissues and adult cells, host immune response, GMP grade production and certification, cell-derived products or cell secretome have proven to be a promising approach and have been implicated in many studies and also in many clinical trials. Utilization of these human MSC-derived exosomes/extracellular vesicles in spinal cord injury has also been demonstrated in many pre-clinical animal models. It is now proven to be therapeutically more efficient and safer than cell therapy. This review focuses on employing human MSC derived EVs for SCI and continues to elucidate the recent advances and emerging EVs trends from other cell types. We discuss biomaterial-based synergistic intervention, mention mimetics and nanovesicles and finally touch upon safety concerns in EV therapy.


Subject(s)
Exosomes , Extracellular Vesicles , Mesenchymal Stem Cells , Spinal Cord Injuries , Animals , Extracellular Vesicles/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Spinal Cord Injuries/therapy
3.
PLoS One ; 13(11): e0206346, 2018.
Article in English | MEDLINE | ID: mdl-30412591

ABSTRACT

Platelet activation has been reported to play a major role in inflammatory response and thrombocytopenia during dengue viral infection. Cells expressing FcϒR2Aand DC-SIGN receptors are reported to be involved in dengue virulence. The present study is designed to assess the expression level of these two receptors on platelet surface collected from dengue patients and to study its association in patients with platelet RNA positive for dengue virus. This was an analytical cross-sectional study carried out in JIPMER hospital, Puducherry. Forty-four patients with dengue infection as cases and 44 patients with non dengue acute other febrile illness(OFI) as controls were recruited. Peripheral venous blood was withdrawn on day of admission, day 3 post admission and day of discharge and serological tests for NS1 dengue antigen and anti IgM antibody were analyzed for diagnosis of dengue infection. Platelet rich plasma was assessed for DC SIGN, FcϒR2A levels and platelets separated from dengue patients were subjected to RNA extraction and detection of presence of viral RNA. The study observed a decreased expression of DC-SIGN and FcϒR2A on platelets in dengue patients compared to OFI group on all the time points. Further, cells expressing DC-SIGN and FcϒR2A were found to be decreased on platelets in dengue patients who were positive for NS1 antigen. DC-SIGN and FcϒR2A expression was also found to be notably decreased in patients positive for platelet DENV RNA when compared with patients negative for platelet DENV RNA. Our results suggest that DC-SIGN and FcϒR2A, which are receptors for viral capture and immune mediated clearance respectively, might be down regulated on platelets in patients with dengue infection. The decreased receptor expression diminishes platelet activation and subsequently has protective action on the host from the ongoing conflict between immune system and dengue virus.


Subject(s)
Blood Platelets/metabolism , Cell Adhesion Molecules/genetics , Dengue/blood , Dengue/genetics , Gene Expression Regulation/genetics , Lectins, C-Type/genetics , Receptors, Cell Surface/genetics , Receptors, IgG/genetics , Adult , Child , DNA, Viral/metabolism , Dengue Virus/genetics , Dengue Virus/physiology , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...