Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Life (Basel) ; 10(9)2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32846924

ABSTRACT

Microgravity or the condition of apparent weightlessness causes bone, muscular and immune system dysfunctions in astronauts following spaceflights. These organ and system-level dysfunctions correlate with changes induced at the single cell level both by simulated microgravity on earth as well as microgravity conditions in outer space (as in the international space station). Reported changes in single bone cells, muscle cells and white blood cells include structural/morphological abnormalities, changes in gene expression, protein expression, metabolic pathways and signaling pathways, suggesting that cells mount some response or adjustment to microgravity. However, the implications of such adjustments on many cellular functions and responses are not clear largely because the primary mechanism of gravity sensing in animal cells is unknown. Here, we used a rotary cell culture system developed by NASA to subject leukemic and erythroleukemic cancer cells to microgravity for 48 h and then quantified their innate immune response to common anti-cancer drugs using biophysical parameters and our recently developed quantum-dot-based fluorescence spectroscopy. We found that leukemic cancer cells treated with daunorubicin show increased chemotactic migration (p < 0.01) following simulated microgravity (µg) compared to normal gravity on earth (1 g). However, cells treated with doxorubicin showed enhanced migration both in 1 g and following µg. Our results show that microgravity modulates cancer cell response to chemotherapy in a drug-dependent manner. These results suggest using simulated microgravity as an immunomodulatory tool for the development of new immunotherapies for both space and terrestrial medicine.

2.
Methods Mol Biol ; 2135: 293-303, 2020.
Article in English | MEDLINE | ID: mdl-32246344

ABSTRACT

Quantum dots (QDs) are semiconductor nanoparticles ranging in size from 2 to 10 nm. QDs are increasingly being developed for biomedical imaging, targeted drug delivery, and green energy technology. Here we describe the novel utilization of biocompatible CdSe-ZnS core-shell semiconductor nanoparticles for assessment of reactive oxygen species (ROS) in the context of chemotherapy and radiotherapy, both of which are important modalities in the treatment of cancer.


Subject(s)
Drug-Related Side Effects and Adverse Reactions/metabolism , Quantum Dots/chemistry , Reactive Oxygen Species/analysis , Cadmium Compounds/chemistry , Cell Line, Tumor , Drug Delivery Systems , Drug Therapy/methods , Humans , Radiotherapy/adverse effects , Reactive Oxygen Species/chemistry , Selenium Compounds/chemistry , Sulfides/chemistry , Zinc Compounds/chemistry
3.
J Biophotonics ; 12(2): e201800172, 2019 02.
Article in English | MEDLINE | ID: mdl-30315626

ABSTRACT

Quantum dots (QDs) are semiconductor nanoparticles ranging in size from 2 to 10 nm. QDs are increasingly being developed for biomedical imaging, targeted drug delivery and green energy technology. These have led to much research on QD interactions with various physical, chemical and biological systems. For biological systems, research has focused on the biocompatibility/cytotoxicity of QDs in the context of imaging/therapy. However, there is a paucity of work on how biological systems and bioactive molecules might be used to alter the optoelectronic properties of QDs. Here, it is shown that these properties can be altered by reactive oxygen species (ROS) from chemotherapeutic media and biological cells following controlled changes in cellular activities. Using CdSe/ZnS core-shell QDs, spectroscopic analysis of optically excited QDs with HL60, K562 and T98G cancer cell lines is performed. Our results show statistically significant (P < 0.0001) modulation of the fluorescence emission spectra of the QDs due to the ROS produced by common chemotherapeutic drugs, daunorubicin and doxorubicin and by cells following chemotherapy/radiotherapy. This optical modulation, in addition to assessing ROS generation, will possibly enhance applications of QDs in simultaneous diagnostic imaging and nanoparticle-mediated drug delivery as well as simultaneous ROS assessment and radiosensitization for improved outcomes in cancer treatments. Reactive molecular species produced by biological cells and chemotherapeutic drugs can create electric fields that alter the photophysical properties of QDs, and this can be used for concurrent monitoring of cellular activities, while inducing changes in those cellular activities.


Subject(s)
Cadmium Compounds/chemistry , Quantum Dots/chemistry , Reactive Oxygen Species/metabolism , Selenium Compounds/chemistry , Sulfides/chemistry , Zinc Compounds/chemistry , Cell Line, Tumor , Daunorubicin/pharmacology , Doxorubicin/pharmacology , Humans , Radiotherapy , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL