Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Tech (Berl) ; 67(2): 71-88, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35313098

ABSTRACT

Due to the presence of electric fields and piezoelectricity in various living tissues, piezoelectric materials have been incorporated into biomedical applications especially for tissue regeneration. The piezoelectric scaffolds can perfectly mimic the environment of natural tissues. The ability of scaffolds which have been made from piezoelectric materials in promoting cell proliferation and regeneration of damaged tissues has encouraged researchers in biomedical areas to work on various piezoelectric materials for fabricating tissue engineering scaffolds. In this review article, the way that cells of different tissues like cardio, bone, cartilage, bladder, nerve, skin, tendon, and ligament respond to electric fields and the mechanism of tissue regeneration with the help of piezoelectric effect will be discussed. Furthermore, all of the piezoelectric materials are not suitable for biomedical applications even if they have high piezoelectricity since other properties such as biocompatibility are vital. Seen in this light, the proper piezoelectric materials which are approved for biomedical applications are mentioned. Totally, the present review introduces the recent materials and technologies that have been used for tissue engineering besides the role of electric fields in living tissues.


Subject(s)
Biocompatible Materials , Tissue Engineering , Bone and Bones , Regenerative Medicine , Tissue Scaffolds
2.
Cardiovasc Toxicol ; 22(3): 207-224, 2022 03.
Article in English | MEDLINE | ID: mdl-34542796

ABSTRACT

Myocardial infarction (MI), triggered by blockage of a coronary artery, remains the most common cause of death worldwide. After MI, the capability of providing sufficient blood and oxygen significantly decreases in the heart. This event leads to depletion of oxygen from cardiac tissue and consequently leads to massive cardiac cell death due to hypoxemia. Over the past few decades, many studies have been carried out to discover acceptable approaches to treat MI. However, very few have addressed the crucial role of efficient oxygen delivery to the injured heart. Thus, various strategies were developed to increase the delivery of oxygen to cardiac tissue and improve its function. Here, we have given an overall discussion of the oxygen delivery mechanisms and how the current technologies are employed to treat patients suffering from MI, including a comprehensive view on three major technical approaches such as oxygen therapy, hemoglobin-based oxygen carriers (HBOCs), and oxygen-releasing biomaterials (ORBs). Although oxygen therapy and HBOCs have shown promising results in several animal and clinical studies, they still have a few drawbacks which limit their effectiveness. More recent studies have investigated the efficacy of ORBs which may play a key role in the future of oxygenation of cardiac tissue. In addition, a summary of conducted studies under each approach and the remaining challenges of these methods are discussed.


Subject(s)
Myocardial Infarction , Animals , Cell Survival , Heart , Humans , Myocardial Infarction/therapy , Oxygen
3.
J Biomed Nanotechnol ; 17(9): 1798-1805, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34688324

ABSTRACT

A pectin-oligochitosan microcapsule system has recently been developed for novel oxygen therapeutic design. To improve the stability of the pectin-oligochitosan microcapsules in physiological conditions, both covalent (glutaraldehyde) and noncovalent (Mn2+ and Ca2+) cross-linkers were tested. The chemistry and morphology of the microcapsules were studied using FTIR and SEM, respectively. Results showed that glutaraldehyde is an effective cross-linker, even at low concentrations and short incubation times, and the glutaraldehyde cross-linking does not negatively impact the morphology of the microcapsules. Moreover, it was confirmed that the hemoglobin could be retained within the microcapsules with a minimal release.


Subject(s)
Oxygen , Pectins , Capsules , Erythrocytes
4.
Int J Nanomedicine ; 16: 4289-4319, 2021.
Article in English | MEDLINE | ID: mdl-34211272

ABSTRACT

Recent developments in three-dimensional (3D) printing technology offer immense potential in fabricating scaffolds and implants for various biomedical applications, especially for bone repair and regeneration. As the availability of autologous bone sources and commercial products is limited and surgical methods do not help in complete regeneration, it is necessary to develop alternative approaches for repairing large segmental bone defects. The 3D printing technology can effectively integrate different types of living cells within a 3D construct made up of conventional micro- or nanoscale biomaterials to create an artificial bone graft capable of regenerating the damaged tissues. This article reviews the developments and applications of 3D printing in bone tissue engineering and highlights the numerous conventional biomaterials and nanomaterials that have been used in the production of 3D-printed scaffolds. A comprehensive overview of the 3D printing methods such as stereolithography (SLA), selective laser sintering (SLS), fused deposition modeling (FDM), and ink-jet 3D printing, and their technical and clinical applications in bone repair and regeneration has been provided. The review is expected to be useful for readers to gain an insight into the state-of-the-art of 3D printing of bone substitutes and their translational perspectives.


Subject(s)
Biocompatible Materials/chemistry , Bone Substitutes , Nanostructures/chemistry , Printing, Three-Dimensional , Tissue Engineering/methods , Alloys/chemistry , Animals , Bone Substitutes/chemistry , Bone and Bones/physiology , Humans , Lasers , Printing, Three-Dimensional/instrumentation , Regeneration , Stereolithography , Titanium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...