Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; : 1-16, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37261742

ABSTRACT

Oxidative stress (OS) has been attributed to the progression of various disorders, including cancer, diabetes, and cardiovascular diseases. Several antioxidant compounds and free radical quenchers have been shown to mitigate oxidative stress. However, large-scale randomized controlled trials of such compounds on chronic disease aversion have yielded paradoxical and disappointing results due to the constrained cognizance of their oxidative mechanisms and therapeutic targets. The current study sought to identify the potential therapeutic targets of 7,8-Dihydroxyflavone (7,8-DHF) by analyzing its interactions with the enzymes implicated in oxidative stress and also to explore its radicle quenching potential and prophylactic impact on the H2O2-induced DNA damage. Through the in silco approach, we investigated the antioxidant potential of 7,8-DHF by evaluating its interactions with the human oxidative stress-inducing enzymes such as myeloperoxidase (MPO), NADPH oxidase (NOX), nitric oxide synthase (NOS), and xanthine oxidase (XO) and a comparative analysis of those interactions with known antioxidants (Ascorbic acid, Melatonin, Tocopherol) used as controls. The best-scoring complex was adopted for the simulation analysis in investigating protein-ligand conformational dynamics. The in vitro radicle quenching potential was evaluated by performing a spectrum of antioxidant assays, and radical quenching was observed in a dose-dependent fashion with IC50 values of < 60 µM/mL. Further, we probed its anti-hemolytic potential and prophylactic impact in avian erythrocytes subjected to H2O2-induced hemolysis and DNA damage by implementing hemolysis and comet assays. The protective effect was more pronounced at higher concentrations of the drug.Communicated by Ramaswamy H. Sarma.

2.
J Biomol Struct Dyn ; 31(7): 765-78, 2013.
Article in English | MEDLINE | ID: mdl-22908983

ABSTRACT

Phosphoglycerate mutase catalyzes the interconversion between 2-phosphoglycerate and 3-phosphoglycerate in the glycolytic and gluconeogenic pathways. They exist in two unrelated forms, that is either cofactor (2,3-diphosphoglycerate) dependent or cofactor-independent. These two enzymes have no similarity in amino acid sequence, tertiary structure, and in catalytic mechanism. Wuchereria bancrofti (WB) contains the cofactor-independent form, whereas other organisms can possess the dependent form or both. Since, independent phosphoglycerate mutase (iPGM) is an essential gene for the survival of nematodes, and it has no sequence or structural similarity to the cofactor-dependent phosphoglycerate mutase found in mammals, it represents an attractive drug target for the filarial nematodes. In this current study, a putative cofactor-iPGM gene was identified in the protein sequence of the WB. In the absence of crystal structure, a three-dimensional structure was determined using the homology modeling approximation, and the most stable protein conformation was identified through the molecular dynamics simulation studies, using GROMACS 4.5. Further, the functional or characteristic residues were identified through the sequence analysis, potential inhibitors were short-listed and validated, and potential inhibitors were ranked using the cheminformatics and molecular dynamics simulations studies, Prime MM-GBSA approach, respectively.


Subject(s)
Phosphoglycerate Mutase/chemistry , Wuchereria bancrofti/enzymology , Amino Acid Sequence , Animals , Binding Sites , Isoenzymes/antagonists & inhibitors , Isoenzymes/chemistry , Isoenzymes/metabolism , Models, Molecular , Molecular Dynamics Simulation , Molecular Sequence Data , Mutation , Phosphoglycerate Mutase/antagonists & inhibitors , Phosphoglycerate Mutase/metabolism , Protein Conformation , Wuchereria bancrofti/metabolism
3.
Basic Clin Pharmacol Toxicol ; 109(4): 292-9, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21729242

ABSTRACT

Viper envenomation undeniably induces brutal local manifestations such as haemorrhage, oedema and necrosis involving massive degradation of extracellular matrix at the bitten region and many a times results in dangerous systemic haemorrhage including pulmonary shock. Snake venom metalloproteases (SVMPs) are being considered to be the primary culprits for the venom-induced haemorrhage. As a consequence, the venom researchers and medical practitioners are in deliberate quest of SVMP inhibitors. In this study, we evaluated the inhibitory effect of 1-(3-dimethylaminopropyl)-1-(4-fluorophenyl)-3-oxo-1,3-dihydroisobenzofuran-5-carbonitrile (DFD) on viper venom-induced haemorrhagic and PLA(2) activities. DFD effectively neutralized the haemorrhagic activity of the medically important viper venoms such as Echis carinatus, Echis ocelatus, Echis carinatus sochureki, Echis carinatus leakeyi and Crotalus atrox in a dose-dependent manner. The histological examinations revealed that the compound DFD effectively neutralizes the basement membrane degradation, and accumulation of inflammatory leucocytes at the site of Echis carinatus venom injection further confirms the inhibition of haemorrhagic activity. In addition, DFD dose dependently inhibited the PLA(2) activities of Crotalus atrox and E. c. leakeyi venoms. According to the docking studies, DFD binds to hydrophobic pocket of SVMP with the ki of 19.26 × 10(-9) (kcal/mol) without chelating Zn(2+) in the active site. It is concluded that the clinically approved inhibitors of haemorrhagins could be used as a potent first-aid agent in snakebite management. Furthermore, a high degree of structural and functional homology between SVMPs and their relatives, the MMPs, suggests that DFD analogues may find immense value in the regulation of multifactorial pathological conditions like inflammation, cancer and wound healing.


Subject(s)
Benzofurans/pharmacology , Enzyme Inhibitors/pharmacology , Hemorrhage/drug therapy , Viper Venoms/antagonists & inhibitors , Animals , Citalopram/analogs & derivatives , Dose-Response Relationship, Drug , Erythrocytes/drug effects , Hemolysis , Hemorrhage/chemically induced , Humans , Male , Mice , Phospholipases A/antagonists & inhibitors , Protein Binding , Skin/drug effects , Skin/pathology , Viper Venoms/enzymology , Viper Venoms/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...