Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 161(3)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39007873

ABSTRACT

Patchy particles are an intriguing subject of study and indeed a model system in the field of soft matter physics. In recent years, patchy particle models have been applied to describe a wide variety of systems, including colloidal crystals, macromolecular interactions, liquid crystals, and nanoparticle assemblies. Given the importance of the topic, rationalizing and capturing the basic features of these models is crucial to their correct application in specific systems. In this study, we extend the ion-activated attractive patchy particles model previously employed to elucidate the phase behavior of protein solutions in the presence of trivalent salts. Our extension incorporates the effect of repulsion between unoccupied and occupied binding sites, depicted as patches. Furthermore, we examine the influence of model parameters on the liquid-vapor coexistence region within the phase diagram, employing numerical methods. A deeper understanding of this model will facilitate a better comprehension of the effects observed in experiments.

2.
Colloids Surf B Biointerfaces ; 241: 114063, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38954939

ABSTRACT

Protein crystallization is among the key processes in biomolecular research, but the underlying mechanisms are still elusive. Here, we address the role of inevitable interfaces for the nucleation process. Quartz crystal microbalance with dissipation monitoring (QCM-D) with simultaneously optical microscopy, confocal microscopy, and grazing-incidence small angle X-rays scattering (GISAXS) were employed to investigate the temporal behavior from the initial stage of protein adsorption to crystallization. Here we studied the crystallization of the Human Serum Albumin (HSA), the most abundant blood protein, in the presence of a charged surface and a trivalent salt. We found evidence for interface-assisted nucleation of crystals. The kinetic stages involved are initial adsorption followed by enhanced adsorption after longer times, subsequent nucleation, and finally crystal growth. The results highlight the importance of interfaces for protein phase behavior and in particular for nucleation.

3.
J Chem Phys ; 158(16)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37093140

ABSTRACT

The osmotic second virial coefficient B2 is an important parameter to describe the interactions and phase behavior of protein solutions, including colloidal systems and macromolecular solutions. Another key parameter to describe the driving force of the nucleation of a new phase is the supersaturation, which is used in the classical nucleation theory framework and is connected with the favorable contribution in the Gibbs free energy in the bulk solution. In this article, we establish a connection between B2 calculated from small angle x-ray scattering (SAXS) data and the values of B2 obtained from supersaturation measurements using thermodynamics considerations. The values of the second virial coefficient calculated employing this method agree with those determined via SAXS in the region near the liquid-liquid phase separation border for human serum albumin and bovine serum albumin. The general relations adopted are shown to be useful for the estimation of the second virial coefficient B2 for globular proteins, in the proximity of the binodal biphasic coexistent region.


Subject(s)
Serum Albumin, Bovine , Humans , Solutions , Scattering, Small Angle , X-Ray Diffraction , Osmosis
SELECTION OF CITATIONS
SEARCH DETAIL
...