Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Neurobiol ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760620

ABSTRACT

Transient receptor potential vanilloid subfamily member 1 (TRPV1) has been strongly implicated in the pathophysiology of cerebral stroke. However, the exact role and mechanism remain elusive. TPRV1 channels are exclusively present in the neurovascular system and involve many neuronal processes. Numerous experimental investigations have demonstrated that TRPV1 channel blockers or the lack of TRPV1 channels may prevent harmful inflammatory responses during ischemia-reperfusion injury, hence conferring neuroprotection. However, TRPV1 agonists such as capsaicin and some other non-specific TRPV1 activators may induce transient/slight degree of TRPV1 channel activation to confer neuroprotection through a variety of mechanisms, including hypothermia induction, improving vascular functions, inducing autophagy, preventing neuronal death, improving memory deficits, and inhibiting inflammation. Another factor in capsaicin-mediated neuroprotection could be the desensitization of TRPV1 channels. Based on the summarized evidence, it may be plausible to suggest that TPRV1 channels have a dual role in ischemia-reperfusion-induced cerebral injury, and thus, both agonists and antagonists may produce neuroprotection depending upon the dose and duration. The current review summarizes the dual function of TRPV1 in ischemia-reperfusion-induced cerebral injury models, explains its mechanism, and predicts the future.

2.
Phytomedicine ; 130: 155707, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38788393

ABSTRACT

BACKGROUND: Sepsis causes multiple organ dysfunctions and raises mortality and morbidity rates through a dysregulated host response to infection. Despite the growing research interest over the last few years, no satisfactory treatment exists. Naringin, a naturally occurring bioflavonoid with vast therapeutic potential in citrus fruits and Chinese herbs, has received much attention for treating sepsis-associated multiple organ dysfunctions. PURPOSE: The review describes preclinical evidence of naringin from 2011 to 2024, particularly emphasizing the mechanism of action mediated by naringin against sepsis-associated specific injuries. The combination therapy, safety profile, drug interactions, recent advancements in formulation, and future perspectives of naringin are also discussed. METHODS: In vivo and in vitro studies focusing on the potential role of naringin and its mechanism of action against sepsis-associated organ injuries were identified and summarised in the present manuscript, which includes contributions from 2011 to 2024. All the articles were extracted from the Medline database using PubMed, Science Direct, and Web of Science with relevant keywords. RESULTS: Research findings revealed that naringin modulates many signaling cascades, such as Rho/ROCK and PPAR/STAT1, PIP3/AKT and KEAP1/Nrf2, and IkB/NF-kB and MAPK/Nrf2/HO-1, to potentially protect against sepsis-induced intestinal, cardiac, and lung injury, respectively. Furthermore, naringin treatment exhibits anti-inflammatory, anti-apoptotic, and antioxidant action against sepsis harm, highlighting naringin's promising effects in septic settings. Naringin could be employed as a treatment against sepsis, based on studies on combination therapy, synergistic effects, and toxicological investigation that show no reported severe side effects. CONCLUSION: Naringin might be a promising therapeutic approach for preventing sepsis-induced multiple organ failure. Naringin should be used alongside other therapeutic therapies with caution despite its great therapeutic potential and lower toxicity. Nonetheless, clinical studies are required to comprehend the therapeutic benefits of naringin against sepsis.


Subject(s)
Flavanones , Multiple Organ Failure , Sepsis , Flavanones/pharmacology , Sepsis/drug therapy , Sepsis/complications , Humans , Animals , Multiple Organ Failure/drug therapy , Signal Transduction/drug effects , Citrus/chemistry
3.
Molecules ; 27(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36432051

ABSTRACT

Parkinson's disease (PD) is characterised by dopaminergic neuronal loss in the brain area. PD is a complex disease that deteriorates patients' motor and non-motor functions. In experimental animals, the neurotoxin 6-OHDA induces neuropathological, behavioural, neurochemical and mitochondrial abnormalities and the formation of free radicals, which is related to Parkinson-like symptoms after inter-striatal 6-OHDA injection. Pathological manifestations of PD disrupt the cAMP/ATP-mediated activity of the transcription factor CREB, resulting in Parkinson's-like symptoms. Forskolin (FSK) is a direct AC/cAMP/CREB activator isolated from Coleus forskohlii with various neuroprotective properties. FSK has already been proven in our laboratory to directly activate the enzyme adenylcyclase (AC) and reverse the neurodegeneration associated with the progression of Autism, Multiple Sclerosis, ALS, and Huntington's disease. Several behavioural paradigms were used to confirm the post-lesion effects, including the rotarod, open field, grip strength, narrow beam walk (NBW) and Morris water maze (MWM) tasks. Our results were supported by examining brain cellular, molecular, mitochondrial and histopathological alterations. The FSK treatment (15, 30 and 45 mg/kg, orally) was found to be effective in restoring behavioural and neurochemical defects in a 6-OHDA-induced experimental rat model of PD. As a result, the current study successfully contributes to the investigation of FSK's neuroprotective role in PD prevention via the activation of the AC/cAMP/PKA-driven CREB pathway and the restoration of mitochondrial ETC-complex enzymes.


Subject(s)
Adenylyl Cyclases , Parkinson Disease , Animals , Rats , Oxidopamine/adverse effects , Colforsin/pharmacology , Adenylyl Cyclases/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/etiology , Parkinson Disease/metabolism , Mitochondria/metabolism
4.
Biomedicines ; 10(11)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36359390

ABSTRACT

Huntington's disease (HD) is distinguished by a triple repeat of CAG in exon 1, an increase in poly Q in the Htt gene, and a loss of GABAergic medium spiny neurons (MSN) in the striatum and white matter of the cortex. Mitochondrial ETC-complex dysfunctions are involved in the pathogenesis of HD, including neuronal energy loss, synaptic neurotrophic decline, neuronal inflammation, apoptosis, and grey and white matter destruction. A previous study has demonstrated that beta Boswellic acid (ß-BA), a naturally occurring phytochemical, has several neuroprotective properties that can reduce pathogenic factors associated with various neurological disorders. The current investigation aimed to investigate the neuroprotective potential of ß-BA at oral doses of 5, 10, and 15 mg/kg alone, as well as in conjunction with the potent antioxidant vitamin E (8 mg/kg, orally) in 3-NP-induced experimental HD rats. Adult Wistar rats were separated into seven groups, and 3-NP, at a dose of 10 mg/kg, was orally administered to each group of adult Wistar rats beginning on day 1 and continuing through day 14. The neurotoxin 3-NP induces neurodegenerative, g, neurochemical, and pathological alterations in experimental animals. Continuous injection of 3-NP, according to our results, aggravated HD symptoms by suppressing ETC-complex-II, succinate dehydrogenase activity, and neurochemical alterations. ß-BA, when taken with vitamin E, improved behavioural dysfunctions such as neuromuscular and motor impairments, as well as memory and cognitive abnormalities. Pharmacological treatments with ß-BA improved and restored ETC complexes enzymes I, II, and V levels in brain homogenates. ß-BA treatment also restored neurotransmitter levels in the brain while lowering inflammatory cytokines and oxidative stress biomarkers. ß-BA's neuroprotective potential in reducing neuronal death was supported by histopathological findings in the striatum and cortex. As a result, the findings of this research contributed to a better understanding of the potential role of natural phytochemicals ß-BA in preventing neurological illnesses such as HD.

5.
Cells ; 11(18)2022 09 06.
Article in English | MEDLINE | ID: mdl-36139346

ABSTRACT

Multiple sclerosis (MS) is a chronic neurodegenerative disease marked by oligodendrocyte loss, which results in central neuronal demyelination. AC/cAMP/CREB signaling dysregulation is involved in the progression of MS, including mitochondrial dysfunctions, reduction in nerve growth factors, neuronal inflammation, apoptosis, and white matter degeneration. Our previous research has shown that Forskolin (FSK), a naturally occurring direct adenylyl cyclase (AC)/cAMP/CREB activator, has neuroprotective potential to alleviate pathogenic factors linked with numerous neurological abnormalities. The current study intends to explore the neuroprotective potential of FSK at doses of 40 mg/kg and 60 mg/kg alone, as well as in combination with conventional medicines, such as Fingolimod (FNG), Donepezil (DON), Memantine (MEM), and Simvastatin (SIM) in EB-induced demyelinated experimental MS rats. Adult Wistar rats were divided into nine groups, and EB was infused stereotaxically in the rat brain's intracerebropeduncle (ICP) area. Chronic gliotoxin EB treatment results in demyelination as well as motor and cognitive dysfunctions. FSK, combined with standard medications, improves behavioral dysfunctions, such as neuromuscular and motor deficits and memory and cognitive abnormalities. Following pharmacological treatments improved remyelination by enhancing myelin basic protein and increasing AC, cAMP, and CREB levels in brain homogenates. Furthermore, FSK therapy restored brain mitochondrial-ETC complex enzymes and neurotransmitter levels while decreasing inflammatory cytokines and oxidative stress markers. The Luxol fast blue (LFB) stain results further indicate FSK's neuroprotective potential in preventing oligodendrocyte death. Therefore, the results of these studies contribute to a better understanding of the possible role that natural phytochemicals FSK could have in preventing motor neuron diseases, such as multiple sclerosis.


Subject(s)
Demyelinating Diseases , Gliotoxin , Multiple Sclerosis , Neurodegenerative Diseases , Adenylyl Cyclases/metabolism , Animals , Colforsin , Cytokines/metabolism , Demyelinating Diseases/pathology , Donepezil/adverse effects , Donepezil/metabolism , Ethidium/metabolism , Ethidium/pharmacology , Ethidium/therapeutic use , Fingolimod Hydrochloride , Memantine/therapeutic use , Multiple Sclerosis/pathology , Myelin Basic Protein/metabolism , Myelin Sheath/metabolism , Nerve Growth Factors/metabolism , Neurodegenerative Diseases/metabolism , Oligodendroglia/metabolism , Rats , Rats, Wistar , Simvastatin
6.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-36015107

ABSTRACT

Bipolar disorder (BD) is a chronic mental illness characterized by mood fluctuations that range from depressive lows to manic highs. Several studies have linked the downregulation of SIRT-1 (silent mating type information regulation-2 homologs) signaling to the onset of BD and other neurological dysfunctions. This research aimed to look into the neuroprotective potential of Solanesol (SNL) in rats given ICV-Ouabain injections, focusing on its effect on SIRT-1 signaling activation in the brain. Ouabain, found in hypothalamic and medullary neurons, is an endogenous inhibitor of brain Na+/K+ ATPase. The inhibition of brain Na+/K+ ATPase by Ouabain may also result in changes in neurotransmission within the central nervous system. SNL is a Solanaceae family active phytoconstituent produced from the plant Nicotiana tabacum. SNL is used as a precursor for the production of CoQ10 (Coenzyme Q10), a powerful antioxidant and neuroprotective compound. In the current study, lithium (Li), an important mood stabilizer drug, was used as a control. This study looked at the neuroprotective potential of SNL at dosages of 40 and 80 mg/kg in ICV-OUA injections that caused BD-like neurobehavioral and neurochemical defects in Wistar rats. Wistar rats were placed into eight groups (n = 6) and administered 1 mM/0.5 µL ICV-OUA injections for three days. Neurochemical assessments were done in rat brain homogenates, CSF, and blood plasma samples at the end of the experiment protocol schedule. Long-term SNL and lithium administration have been shown to decrease the number of rearing and crossings and reduce time spent in the center, locomotor activities, and immobility time. Solansesol treatment gradually raises the amount of Na+/K+ ATPase, limiting the severity of behavioural symptoms. These findings also revealed that SNL increases the levels of SIRT-1 in CSF, blood plasma, and brain homogenate samples. Moreover, in rat brain homogenates and blood plasma samples, SNL modulates apoptotic markers such as Caspase-3, Bax (pro-apoptotic), and Bcl-2 (anti-apoptotic). Mitochondrial-ETC complex enzymes, including complex-I, II, IV, V, and CoQ10, were also restored following long-term SNL treatment. Furthermore, SNL lowered inflammatory cytokines (TNF-α, IL-1ß) levels while restoring neurotransmitter levels (serotonin, dopamine, glutamate, and acetylcholine) and decreasing oxidative stress markers. Histological examinations also validated Solanesol's protective effect. As a result, our findings suggest that SNL, as a SIRT-1 signalling activator, may be a promising therapeutic approach for BD-like neurological dysfunctions.

7.
Genes (Basel) ; 13(8)2022 07 25.
Article in English | MEDLINE | ID: mdl-35893061

ABSTRACT

Multiple sclerosis (MS) is a severe immune-mediated neurological disease characterized by neuroinflammation, demyelination, and axonal degeneration in the central nervous system (CNS). This is frequently linked to motor abnormalities and cognitive impairments. The pathophysiological hallmarks of MS include inflammatory demyelination, axonal injury, white matter degeneration, and the development of CNS lesions that result in severe neuronal degeneration. Several studies suggested downregulation of nuclear factor erythroid-2-related factor-2 (Nrf2)/Heme oxygenase-1 (HO-1) signaling is a causative factor for MS pathogenesis. Acetyl-11-keto-ß-boswellic acid (AKBA) is an active pentacyclictriterpenoid obtained from Boswellia serrata, possessing antioxidant and anti-inflammatory properties. The present study explores the protective potential of AKBA on behavioral, molecular, neurochemical, and gross pathological abnormalitiesandhistopathological alterations by H&E and LFB staining techniques in an experimental model of multiple sclerosis, emphasizing the increase inNrf2/HO-1 levels in the brain. Moreover, we also examine the effect of AKBA on the intensity of myelin basic protein (MBP) in CSF and rat brain homogenate. Specific apoptotic markers (Bcl-2, Bax, andcaspase-3) were also estimated in rat brain homogenate. Neuro behavioralabnormalities in rats were examined using an actophotometer, rotarod test, beam crossing task (BCT),and Morris water maze (MWM). AKBA 50 mg/kg and 100 mg/kg were given orally from day 8 to 35 to alleviate MS symptoms in the EB-injected rats. Furthermore, cellular, molecular, neurotransmitter, neuroinflammatory cytokine, and oxidative stress markers in rat whole brain homogenate, blood plasma, and cerebral spinal fluid were investigated. This study shows that AKBA upregulates the level of antioxidant proteins such as Nrf2 and HO-1 in the rat brain. AKBA restores altered neurochemical levels, potentially preventing gross pathological abnormalities during MS progression.


Subject(s)
Multiple Sclerosis , NF-E2-Related Factor 2 , Animals , Antioxidants/pharmacology , Ethidium , Heme Oxygenase-1/genetics , Models, Theoretical , Multiple Sclerosis/drug therapy , Multiple Sclerosis/genetics , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Neuroprotection , Rats , Triterpenes
8.
Nucleic Acids Res ; 32(18): 5677-84, 2004.
Article in English | MEDLINE | ID: mdl-15494455

ABSTRACT

Genomic regions containing trinucleotide repeats (TNRs) are highly unstable, as the repeated sequences exhibit a high rate of mutational change, in which they undergo either a contraction or an expansion of repeat numbers. Although expansion of TNRs is associated with several human genetic diseases, the expansion mechanism is poorly understood. Extensive studies in model organisms have indicated that instability of TNRs occurs by several mechanisms, including replication slippage, DNA repair and recombination. In all models, the formation of secondary structures by disease-associated TNRs is a critical step in the mutation process. In this report, we demonstrate that TNRs and inverted repeats (IRs) both of which have the potential to form secondary structures in vivo, increase spontaneous unequal sister-chromatid exchange (SCE) in vegetatively growing yeast cells. Our results also show that TNR-mediated SCE events are independent of RAD50, MRE11 and RAD51, whereas IR-stimulated SCEs are dependent on the RAD52 epistasis-group genes. We propose that many TNR expansion mutations occur by SCE.


Subject(s)
Repetitive Sequences, Nucleic Acid , Saccharomyces cerevisiae/genetics , Sister Chromatid Exchange , Trinucleotide Repeats , DNA/chemistry , DNA-Binding Proteins/physiology , Endodeoxyribonucleases/physiology , Exodeoxyribonucleases/physiology , Rad51 Recombinase , Rad52 DNA Repair and Recombination Protein , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...