Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Environ Sci Pollut Res Int ; 31(29): 41745-41774, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38853230

ABSTRACT

Antibiotic resistance genes (ARGs) have emerged as a significant global health threat, contributing to fatalities worldwide. Wastewater treatment plants (WWTPs) and livestock farms serve as primary reservoirs for these genes due to the limited efficacy of existing treatment methods and microbial adaptation to environmental stressors. Anaerobic digestion (AD) stands as a prevalent biological treatment for managing sewage sludge and manure in these settings. Given the agricultural utility of AD digestate as biofertilizers, understanding ARGs' fate within AD processes is essential to devise effective mitigation strategies. However, understanding the impact of various factors on ARGs occurrence, dissemination, and fate remains limited. This review article explores various AD treatment parameters and correlates to various resistance mechanisms and hotspots of ARGs in the environment. It further evaluates the dissemination and occurrence of ARGs in AD feedstocks and provides a comprehensive understanding of the fate of ARGs in AD systems. This review explores the influence of key AD parameters such as feedstock properties, pretreatments, additives, and operational strategies on ARGs. Results show that properties such as high solid content and optimum co-digestion ratios can enhance ARG removal, while the presence of heavy metals, microplastics, and antibiotics could elevate ARG abundance. Also, operational enhancements, such as employing two-stage digestion, have shown promise in improving ARG removal. However, certain pretreatment methods, like thermal hydrolysis, may exhibit a rebounding effect on ARG levels. Overall, this review systematically addresses current challenges and offers future perspectives associated with the fate of ARGs in AD systems.


Subject(s)
Drug Resistance, Microbial , Drug Resistance, Microbial/genetics , Anaerobiosis , Sewage , Wastewater , Anti-Bacterial Agents/pharmacology , Waste Disposal, Fluid/methods
2.
J Hazard Mater ; 460: 132419, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37651931

ABSTRACT

In recent years, shorter-chain fluorinated compounds have been manufactured as alternatives to legacy per- and polyfluoroalkyl substances (PFAS) after a global ban on some long-chain PFAS. This study is the first to investigate the degradability of emerging PFAS by an electrochemical plug flow reactor (EPFR). Ten different emerging PFAS, representing classes of fluorotelomer alcohol, perfluoroalkyl ether carboxylate, polyfluoroalkyl ethersulfonic acids, perfluoroalkyl ether/polyether carboxylates, perfluoroether sulfonate, N-alkyl perfluoroalkylsulfonamido carboxylate, fluoroalkyl phosphonic acid, and perfluoro alkane sulfonamide were investigated. The process kinetics was performed. The degradation of parent compounds increased with increasing retention time (RT). At 45.2 min of RT, the degradation of parent compounds ranged between 68%-100% with a current density of 17.2 mA/cm2. A linear increase in pseudo-first order rate constants was observed for all PFAS with increasing current density from 5.7 to 28.7 mA/cm2 (R2 > 0.91). The effect of pH, natural organic matter, and bicarbonate on the degradation, defluorination, and fluorine mass balance are reported. Alkaline pH (11) caused a decrease in degradation for all PFAS. While the presence of natural organic matter (NOM) significantly decreased the degradation and defluorination processes, the presence of bicarbonate at all studied concentrations (25, 50, and 100 mg/L) did not affect the process efficiency. The defluorination reduced to 34% from 81% with 15 mg/L NOM. The unknown/undetected fluorine fraction also increased in the presence of 15 mg/L NOM indicating the formation of NOM-PFAS complexes. Additionally, C2-C8 perfluoro carboxylic acids (PFCAs), one perfluoro sulfonic acid (PFSA), two H-PFCAs, and 4:2 fluorotelomer sulfonate (FTS) were identified as degradation byproducts in suspect screening. The electrical energy per order for PFAS ranged between 1.8 and 19.4 kWh/m3. This study demonstrates that emerging types of PFAS can potentially be degraded using an EPFR with relatively low electrical energy requirements.

3.
MethodsX ; 11: 102290, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37577167

ABSTRACT

QuEChERS (quick, easy, cheap, effective, rugged, and safe) sample processing methods have previously been applied to a range of compounds and matrices. This study presents a modified QuEChERS sample processing method that was validated and employed for 24 per- and polyfluoroalkyl substances (PFAS) for various biological matrices. PFAS are a group of synthetic chemicals that have attracted substantial attention as some compounds are acknowledged to be persistent, toxic, and bioaccumulative. It is crucial to determine PFAS in diverse environmental matrices. Currently, limited sample processing methods for PFAS in biological matrices are available and the majority only focus on a few compounds such as perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA). Thus, there is a demand to develop a sample processing method which is effective for many commonly tested PFAS compounds in environmental biological samples. In this study, the detailed sample processing procedures and method performance are described. The highlights of this method are: •The extraction solvent and salts were adjusted for PFAS extraction from environmental biological matrices.•The modified QuEChERS method is effective for extraction and cleanup from a variety of matrices including algae, plants, invertebrates, amphibians, and fish.

4.
Environ Pollut ; 331(Pt 2): 121938, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37263566

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) have extensively contaminated freshwater aquatic ecosystems where they can be transported in water and partition to sediment and biota. In this paper, three freshwater benthic macroinvertebrates with different foraging modes were exposed to environmentally relevant concentrations of eight perfluoroalkyl carboxylates (PFCA), three perfluoroalkyl sulfonates (PFSA), and three fluorotelomer sulfonates (FTS) at varying divalent cation concentrations of magnesium (Mg2+) and calcium (Ca2+). Divalent cations can impact PFAS partitioning to solids, especially to sediments, at higher concentrations. Sediment dwelling worms (Lumbriculus variegatus), epibenthic grazing snails (Physella acuta), and sediment-dwelling filter-feeding bivalves (Elliptio complanata) were selected due to their unique foraging modes. Microcosms were composed of synthetic sediment, culture water, macroinvertebrates, and PFAS and consisted of a 28-day exposure period. L. variegatus had significantly higher PFAS bioaccumulation than P. acuta and E. complanata, likely due to higher levels of interactions with and ingestion of the contaminated sediment. "High Mg2+" (7.5 mM Mg2+) and "High Ca2+" (7.5 mM Ca2+) conditions generally had statistically higher bioaccumulation factors (BAF) than the "Reference Condition" (0.2 mM Ca2+ and 0.2 mM Mg2+) for PFAS with perfluorinated chain lengths greater than eight carbons. Long-chain PFAS dominated the PFAS profiles of the macroinvertebrates for all groups of compounds studied (PFCA, PFSA, and FTS). These results indicate that the study organism has the greatest impact on bioaccumulation, although divalent cation concentration had observable impacts between organisms depending on the environmental conditions. Elevated cation concentrations in the microcosms led to significantly greater bioaccumulation in the test organisms compared to the experimental reference conditions for long-chain PFAS.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Cations, Divalent , Bioaccumulation , Ecosystem , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis , Fresh Water , Alkanesulfonates , Water , Carboxylic Acids
5.
Environ Sci Process Impacts ; 25(3): 415-431, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36637091

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a large group of man-made fluorinated organic chemicals that can accumulate in the environment. In water resource recovery facilities (WRRFs), some commonly detected PFAS tend to partition to and concentrate in biosolids where they can act as a source to ecological receptors and may leach to groundwater when land-applied. Although biosolids undergo some stabilization to reduce pathogens before land application, they still contain many microorganisms, contributing to the eventual decomposition of different components of the biosolids. This work demonstrates ways in which microbial weathering can influence biosolids decomposition, degrade PFAS, and impact PFAS partitioning in small-scale, controlled laboratory experiments. In the microbial weathering experiments, compound-specific PFAS biosolids-water partitioning coefficients (Kd) were demonstrated to decrease, on average, 0.4 logs over the course of the 91 day study, with the most rapid changes occurring during the first 10 days. Additionally, the highest rates of lipid, protein, and organic matter removal occurred during the same time. Among the evaluated independent variables, statistical analyses demonstrated that the most significant solids characteristics that impacted PFAS partitioning were organic matter, proteins, lipids, and molecular weight of organics. A multiple linear regression model was built to predict PFAS partitioning behavior in biosolids based on solid characteristics of the biosolids and PFAS characteristics with a R2 value of 0.7391 when plotting predicted and measured log Kd. The findings from this work reveal that microbial weathering can play a significant role in the eventual fate and transport of PFAS and their precursors from biosolids.


Subject(s)
Fluorocarbons , Groundwater , Water Pollutants, Chemical , Humans , Fluorocarbons/analysis , Biosolids , Water Resources , Water Pollutants, Chemical/analysis
6.
Sci Total Environ ; 866: 161208, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36581279

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) in aquatic environments have caused global concern due to their persistence, toxicity, and potential bioaccumulation of some compounds. As an important compartment of the aquatic ecosystem, sediment properties impact PFAS partitioning between aqueous and solid phases, but little is known about the influence of sediment organic carbon content on PFAS bioaccumulation in benthic organisms. In this study, three freshwater benthic macroinvertebrates - worms (Lumbriculus variegatus), mussels (Elliptio complanata) and snails (Physella acuta) - were exposed for 28 days to PFAS spiked synthetic sediment equilibrated with a synthetic surface water. Using microcosms, sediment organic carbon content - 2%, 5% and 8% - was manipulated to assess its impact on PFAS bioaccumulation. Worms were found to have substantially greater PFAS bioaccumulation compared to mussels and snails. The bioaccumulation factors (BAFs) and biota sediment accumulation factors (BSAFs) in worms were both one to two magnitudes higher than in mussels and snails, likely due to different habitat-specific uptake pathways and elimination capacities among species. In these experiments, increasing sediment organic carbon content decreased the bioaccumulation of PFAS to benthic macroinvertebrates. In worms, sediment organic carbon content was hypothesized to impact PFAS bioaccumulation by affecting PFAS partitioning and sediment ingestion rate. Notably, the BSAF values of 8:2 fluorotelomer sulfonic acid (FTS) were the largest among 14 PFAS for all species, suggesting that the benthic macroinvertebrates probably have different metabolic mechanisms for fluorotelomer sulfonic acids compared to fish evaluated in published literature. Understanding the impact of species and sediment organic carbon on PFAS bioaccumulation is key to developing environmental quality guidelines and evaluating potential ecological risks to higher trophic level species.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Animals , Bioaccumulation , Carbon , Ecosystem , Water Pollutants, Chemical/analysis , Fresh Water , Geologic Sediments
7.
Polymers (Basel) ; 14(14)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35890574

ABSTRACT

We report microbial resistance and catalytic activity of high viscosity cationic poly(proline-epichlorohydrin) composite (PRO-EPI) in the aqueous system. The PRO-EPI was prepared by a simple polycondensation, followed by FTIR, 1H NMR, SEM, DLS, viscosity, and DSC/TGA characterization. Several concentrations of the PRO-EPI were tested against Gram-negative (E. coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) microorganisms. The antimicrobial screening revealed that PRO-EPI was a potent antimicrobial agent with the least inhibitory concentrations (MICs) of 128 µg/mL against Gram-negative microorganisms. The PRO-EPI indicated no inhibitory effect against Gram-positive microorganisms. It was determined that PRO-EPI contains polymeric-quaternary ammonium compounds that inactivate the Gram-negative microorganisms by a dual mode of action and carries domains for electrostatic interaction with the microbial membrane and an intracellular target. To study the removal of toxic industrial wastewater, congo red (CR) was tested using sodium borohydride as a reducing agent. Adsorption was achieved within 20 min at a rate constant of 0.92 ks-1. UV-vis spectra showed that the removal of CR in the reaction solution was due to the breakup of the azo (-N=N-) bonds and adsorption of aromatic fragments. PRO is biodegradable and non-toxic, and PRO-EPI was found to be both antimicrobial and also acts as a catalyst for the removal of congo red dye.

8.
Sci Total Environ ; 833: 155205, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35421486

ABSTRACT

This study reports a structured investigation on the degradation kinetics of different types (gyrAR,tetAR, qnrSR) and conformational forms (chromosomal, plasmids) of ARGs and mobile genetic elements (intl-1, plasmids) as a function of water matrix (DI water, phosphate buffer, wastewater) with UV and UV/H2O2 treatments. Extracellular, intracellular and the free-ARGs fate were tracked to infer the impact of various parameters on the degradation efficacy of the treatment process. The degradation profile of e-ARGs (118-454 bp) showed 1-4 log reductions but did not correlate strongly to amplicon size indicating the importance of active sites distribution and/or types of ARGs for UV induced gene damage. The i-ARGs showed similar degradation rates compared to e-ARGs for UV in phosphate buffer (PBS) but showed (1.3-2 times) slower rates for i-ARGs with UV/H2O2 due to scavenging of OH radicals by the cellular components. While the ARB inactivation was effective, but ARG damage was not supplemental as i-ARGs and f-ARGs persisted. In the wastewater matrix, generation of radical species was contributing to improved degradation rates from UV/H2O2 treatment, specifically for f-ARGs resulting in significantly improved degradation (p<0.05) compared to PBS. These indicates a non-selective nature of attack from radical species generated from UV irradiation on the effluent organic matter (EfOM) than sequenced based damage to the genes from UV. For the plasmid degradation, conformational differences pertaining to the supercoiled structures and intracellular forms influenced slower (1.2-2.8 times) UV mediated gene damage rate as opposed to chromosomal ARGs. These results can be useful for better assessing UV based treatment processes for effective ARG removal.


Subject(s)
Wastewater , Water Purification , Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Genes, Bacterial , Hydrogen Peroxide , Phosphates , Plasmids , Water , Water Purification/methods
9.
J Hazard Mater ; 423(Pt A): 126938, 2022 02 05.
Article in English | MEDLINE | ID: mdl-34474369

ABSTRACT

For a comprehensive estimation of metals removal by sorbents in stormwater systems, it is essential to evaluate the impacts of co-contaminants. However, most studies consider only metals (single or multiple), which may overestimate performance. This study employed a batch method to investigate the performance of five low-cost sorbents - coconut coir fiber (CCF), blast furnace slag (BFS), waste tire crumb rubber (WTCR), biochar (BC), and iron coated biochar (FeBC) - for simultaneous removal of Cd, Cr, Cu, Ni, Pb and Zn from simulated stormwater (SSW) containing other contaminants (nutrients and polycyclic aromatic hydrocarbons). BFS and CCF demonstrated the highest sorption capacity of all metals (> 95% removal) in all systems (single and multi-contaminant). However, the presence of other contaminants in solution reduced metals removal for other sorbents, as follows (highest to lowest removal): single-metal > multi-metal > multi-contaminant solutions, and removal efficiency ranking among metals was generally Cr~Cu~Pb > Ni > Cd > Zn. Humic acid (HA) negatively affected the metal sorption, likely due to the formation of soluble HA-metal complexes; NaCl concentration did not impact removal, but alkaline pH improved removal. These findings indicate that sorbents need to be tested under realistic stormwater solution chemistry including co-contaminants to appropriately characterize performance prior to implementation.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Adsorption , Cadmium , Humic Substances , Hydrogen-Ion Concentration , Lead , Salinity , Water Pollutants, Chemical/analysis , Zinc
10.
Water Sci Technol ; 84(12): 3442-3468, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34928819

ABSTRACT

The presence of poly- and perfluoroalkyl substances (PFAS) has caused serious problems for drinking water supplies especially at intake locations close to PFAS manufacturing facilities, wastewater treatment plants (WWTPs), and sites where PFAS-containing firefighting foam was regularly used. Although monitoring is increasing, knowledge on PFAS occurrences particularly in municipal and industrial effluents is still relatively low. Even though the production of C8-based PFAS has been phased out, they are still being detected at many WWTPs. Emerging PFAS such as GenX and F-53B are also beginning to be reported in aquatic environments. This paper presents a broad review and discussion on the occurrence of PFAS in municipal and industrial wastewater which appear to be their main sources. Carbon adsorption and ion exchange are currently used treatment technologies for PFAS removal. However, these methods have been reported to be ineffective for the removal of short-chain PFAS. Several pioneering treatment technologies, such as electrooxidation, ultrasound, and plasma have been reported for PFAS degradation. Nevertheless, in-depth research should be performed for the applicability of emerging technologies for real-world applications. This paper examines different technologies and helps to understand the research needs to improve the development of treatment processes for PFAS in wastewater streams.


Subject(s)
Fluorocarbons , Water Purification , Fluorocarbons/analysis , Ion Exchange , Manufacturing and Industrial Facilities , Wastewater
11.
Ultrason Sonochem ; 76: 105639, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34175810

ABSTRACT

The power density modulates the dynamics of the chemical reactions during the ultrasonic breakdown of organic compounds. We evaluated the ultrasonic degradation of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) at various power densities (30 W/L-262 W/L) with and without sparging Argon. We observed pseudo-first-order degradation kinetics at an initial PFASs concentration of 100 nM over a range of power density. The rate kinetics of degradation shows a non-linear increase with an increase in power density. We proposed a four-parameter logistic regression (4PLR) equation that empirically fits the degradation rate kinetics with the power density. The 4PLR equation predicts that the maximum achievable half-life of PFOA and PFOS sonochemical degradation are 1 and 10 min under a given set of experimental conditions. The high bulk-water temperature (i.e., 30 °C) of the aqueous sample helps increase the degradation rate of PFOA and PFOS. The addition of oxidants such as iodate and chlorate help enhance PFOA degradation in an argon environment at an ultrasonic frequency of 575 kHz.

12.
Chemosphere ; 274: 129812, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33582536

ABSTRACT

The potential of five low-cost and globally available sorbents, including three raw waste products - waste tire crumb rubber (WTCR), coconut coir fiber (CCF) and blast furnace slag (BFS) - and two modified materials - biochar (BC) and iron coated biochar (FeBC) - were evaluated for removing a mixture of polycyclic aromatic hydrocarbons (PAHs): pyrene (PYR), phenanthrene (PHE), acenaphthylene (ACY) and naphthalene (NAP) from simulated stormwater. The physicochemical characteristics of the sorbents were assessed by BET-N2 surface area, CHN elemental analysis, FTIR and scanning electron microscope (SEM-EDS). The experimental data were well described by both linear and Freundlich isotherm and pseudo-second order kinetic models. The adsorption rate was mainly controlled by the film diffusion mass transfer mechanism. The magnitude of PAHs partition coefficients (Kd) followed the order of BC > FeBC > WTCR > CCF â‰« BFS, ranging from 80 to 390,000 L/kg. The sorption Kd values were positively correlated with both aromaticity of sorbents and octanol-water partition coefficients (Kow) of PAHs. Solution ionic strength and pH did not have significant effects on the sorption of PAHs by all sorbents. In contrast, humic acid, as dissolved organic carbon, decreased sorption capacities of WTCR and CCF, and increased sorption efficiency of BFS, which was confirmed with field-collected real stormwater. The hydrophobic π-π interactions were the main mechanism for the sorption of PAHs by various sorbents. These findings are promising for future development of cost-effective sorption filters for removal of hydrophobic organic pollutants from urban stormwater runoff.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Adsorption , Humic Substances , Hydrophobic and Hydrophilic Interactions , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis
13.
Chemosphere ; 271: 129530, 2021 May.
Article in English | MEDLINE | ID: mdl-33482527

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) have gained increasing attention due to the potential health risks that they present. Secondary sludge and biosolids are known as notable PFAS emission routes to the environment. In this study, partitioning behavior of 14 PFAS were investigated across four secondary wastewater treatment types (activated sludge, trickling filter, biological nutrient removal, and rotating biological contactor; n = 10) and three sludge stabilization methods (composting, aerobic digestion, and anaerobic digestion; n = 6). Batch experiments were conducted to evaluate how PFAS sorption to secondary sludge and biosolid was affected by various treatment methods, solid properties, and solution chemistry parameters. Insignificant differences in compound-specific partitioning coefficients (Kd) were observed among the four secondary treatment methods. However, sludge stabilization resulted in significantly different partitioning behavior among biosolid samples, in which anaerobically digested biosolids generally had significantly higher Kd values compared to aerobically digested and composted biosolids (anaerobic digestion > aerobic digestion > composting). Multiple linear regression models were developed to explain analyte-specific Kd values across the biosolid samples and identified that solid-specific property significance was as follows: protein fraction > organic matter fraction > lipid fraction. Stabilization generally decreased the PFAS sorption capacity relative to the secondary sludge samples. Furthermore, PFAS Kd increased with elevated calcium concentrations and ionic strengths and decreased with increasing pH values in sludge and biosolid samples. These findings could inform the decision-making process to reduce the release of PFAS to the environment.


Subject(s)
Fluorocarbons , Water Purification , Biosolids , Sewage
14.
Chemosphere ; 243: 125349, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31756655

ABSTRACT

This study investigates electrooxidation of short (C3-C6) and long (C7-C-18) chain perfluorocarboxylic acids (PFCAs) including perfluorooctane sulfonate (PFOA) using Si/BDD electrode. The effect of operational parameters (supporting electrolyte type, applied current density, and initial pH) were explored for PFOA removal. At the optimized conditions, 74% TOC removal and 37% defluorination ratio were gained for 10 mg L-1 of PFOA solution which evidences that the shorter chain PFCAs were formed. The PFOA degradation pathway followed one direct electron transfer from PFOA molecule to anode surface. Then two different degradation pathways were proposed. The first proposed degradation mechanism involved the reaction of perfluoroheptyl radical and hydroxyl radical, the release of HF and hydrolysis. The second mechanism involved the reaction between perfluoroheptyl radical and O2, formation of C7F15O and perfluorohexyl radical with releasing COF2. The removal of short- (C3-C6) and long-chain PFCAs (C7-C18) was also characterized. More than 95% of removal efficiency was gained for all long-chain PFCAs, excluding C7. The removal ratios of short-chain PFCAs (C3-C6) were 39%, 41%, 66% and 70% for C3, C4, C5 and C6, respectively. Contrary to long-chain PFCAs, chain-length dependence for short-chain PFCAs were observed. Defluorination ratio of short-chain PFCAs was only 45% signifying that defluorination partially occurred. Water matrix did not significantly affect the degradation of short-chain PFCAs in deionized water (DI), river water and secondary effluent of a wastewater treatment plant (WWTP). In contrast, defluorination ratio of long-chain PFCAs was noticeably affected by water matrix with the order of DI water > WWTP effluent > river water.


Subject(s)
Alkanesulfonic Acids/chemistry , Boron/chemistry , Electrodes , Fluorocarbons/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Diamond/chemistry , Hydroxyl Radical/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/analysis
15.
Chemosphere ; 215: 396-403, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30336316

ABSTRACT

Exposure to mixtures of endocrine disrupting compounds (EDCs) has been hypothesized to produce potential synergistic or antagonistic effects that can cause undesired effects that are not reflected by the individual compounds. In this study, the estrogenic activities of 11 EDCs of global environmental concern were systematically investigated using the yeast estrogen screen (YES). The contribution of the individual chemical to the total endocrine activity of environmentally relevant mixtures was evaluated. Compared to 17ß-estradiol (E2) as a standard, estrone (E1), estriol (E3), ethinyl estradiol (EE2), bisphenol-A (BPA), and genistein (GEN) showed estrogenic effects, while dibutyl phthalate (DBP), n-butyl benzyl phthalate (BBP), Bis(2-ethylhexyl) phthalate (DEHP), nonyl phenol (NP) and 4-tert-octyl phenol (OP) showed anti-estrogenic effects. The 11 EDCs mixture at a constant environmentally relevant ratio also showed estrogenic activity. The mixtures data were fit to concentration addition (CA), response addition (RA) and interaction (IR) models, respectively. The IR model was not statistically different from the observed value and better predicted results than the CA model for mixtures of all 11 compounds. For the mixtures with the 6 estrogenic compounds only, additive effects were observed, and the data were well predicted by the CA and IR models. Further, in the 11 EDCs mixture the presence of EE2 at an environmentally relevant concentration did not increase the estrogenic activity as compared to a 10 EDCs mixture without EE2.


Subject(s)
Endocrine Disruptors/chemistry , Environmental Pollutants/analysis , Estrogens , Drug Interactions , Estradiol/pharmacology , Estradiol/standards , Water Pollutants, Chemical/analysis , Yeasts/chemistry
16.
Ultrason Sonochem ; 51: 359-368, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30219351

ABSTRACT

Sonolytic degradation kinetics of non-volatile surfactant perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) were investigated over a range of concentration, considering active cavity as a catalyst. The Michaelis-Menten type kinetic model was developed to empirically estimate the concentration of active cavity sites during reactions. Sonolytic degradation of PFOA and PFOS, as well as the formation of its inorganic constituents, fluoride, and sulfate, follows saturation kinetics of pseudo-first order at lower concentration (<2.34 µM) and zero order at higher concentration (>23.60 µM). Nitrate and hydrogen peroxide formations were 0.53 ±â€¯0.14 µM/min and 0.95 ±â€¯0.11 µM/min, respectively. At a power density of 77 W/L and frequency of 575 kHz, the empirically estimated maximum number of active cavity sites that could lead to the sonolytic reaction were 89.25 and 8.8 mM for PFOA and PFOS, respectively. This study suggests that a lower number of active cavity sites with higher temperature needed to degrade PFOS might be the reason for lower degradation rate of PFOS compared to that of PFOA. Diffusion of non-volatile surfactants at the cavity-water interface is found to be the rate-limiting step for the mineralization of perfluoroalkyl substances.

17.
Environ Monit Assess ; 190(2): 65, 2018 Jan 06.
Article in English | MEDLINE | ID: mdl-29307043

ABSTRACT

Infants and toddlers are constantly exposed to toys at childcare facilities. Toys are made of a variety of plastics that often use endocrine-disrupting chemicals such as bisphenol-A (BPA) and phthalates as their building blocks. The goal of this study was to assess the non-dietary exposure of infants and toddlers to BPA and phthalates via leaching. We have successfully developed wipe tests to evaluate the leachability of BPA and phthalates from toys used at several day care facilities in Philadelphia. Our studies have shown an average leaching of 13-280 ng/cm2 of BPA and phthalates. An estimate of total exposure of infants to BPA and phthalates is reported. The leaching of the chemicals was observed to be dependent on the washing procedures and the location of the day care facilities. Using bleach/water mixture two or more times a week to clean the toys seems to reduce the leaching of chemicals from the toys. There is a huge data gap in the estimated intake amounts and reported urinary concentrations; this is the first study that provides valuable information to address these data gaps in the existing literature.


Subject(s)
Benzhydryl Compounds/analysis , Endocrine Disruptors/analysis , Environmental Exposure , Phenols/analysis , Phthalic Acids/analysis , Plastics/analysis , Play and Playthings , Child, Preschool , Humans , Infant , Philadelphia
18.
Environ Monit Assess ; 189(12): 626, 2017 Nov 09.
Article in English | MEDLINE | ID: mdl-29124425

ABSTRACT

The U.S. Environmental Protection Agency (EPA) has developed methods for the analysis of steroid hormones in water, soil, sediment, and municipal biosolids by HRGC/HRMS (EPA Method 1698). Following the guidelines provided in US-EPA Method 1698, the extraction methods were validated with reagent water and applied to municipal wastewater, surface water, and municipal biosolids using GC/MS/MS for the analysis of nine most commonly detected steroid hormones. This is the first reported comparison of the separatory funnel extraction (SFE), continuous liquid-liquid extraction (CLLE), and Soxhlet extraction methods developed by the U.S. EPA. Furthermore, a solid phase extraction (SPE) method was also developed in-house for the extraction of steroid hormones from aquatic environmental samples. This study provides valuable information regarding the robustness of the different extraction methods. Statistical analysis of the data showed that SPE-based methods provided better recovery efficiencies and lower variability of the steroid hormones followed by SFE. The analytical methods developed in-house for extraction of biosolids showed a wide recovery range; however, the variability was low (≤ 7% RSD). Soxhlet extraction and CLLE are lengthy procedures and have been shown to provide highly variably recovery efficiencies. The results of this study are guidance for better sample preparation strategies in analytical methods for steroid hormone analysis, and SPE adds to the choice in environmental sample analysis.


Subject(s)
Chemical Fractionation/methods , Environmental Monitoring/methods , Environmental Pollutants/analysis , Hormones/analysis , Liquid-Liquid Extraction , Solid Phase Extraction/methods , Steroids , Tandem Mass Spectrometry/methods , United States , United States Environmental Protection Agency , Wastewater/analysis , Water/analysis , Water Pollutants, Chemical/analysis
19.
J Nanosci Nanotechnol ; 15(9): 6524-32, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26716208

ABSTRACT

This article discusses the hydrothermal synthesis of well-dispersed faceted α-GaOOH in the presence of sodium acetate by the self-assembly method. The synthesized α-GaOOH possesses a mixture of hexagonal and rectangular plates, cubic and diamond-like morphologies. The presence of ethanol as a co-solvent with water (1:1) facilitates scroll-like cylindrical morphology. The influences of sodium acetate concentration, hydrothermal temperatures, time and solvent on the formation of the above-mentioned morphologies were investigated. The synthesized α-GaOOH was characterized using X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM) and High-Resolution Transmission Electron Microscopy (HR-TEM), thermal analysis and nitrogen adsorption analysis. The XRD pattern confirmed the formation of orthorhombic α-GaOOH. The increase of the sodium acetate concentration from 0.031 mol/L to 0.250 mol/L facilitates the formation of more cubic and diamond-shaped particles than plate-like particles. The formation of faceted α-GaOOH is slow at 150 degrees C, and a further increase in hydrothermal temperature from 175 degrees C to 225 degrees C had no appreciable effect. Similarly, an increase in hydrothermal time from 5 h to 20 h at 200 degrees C facilitates hexagonal to cubic shaped plates. The solution pH strongly influenced the aspect ratio of the nanoplates. Hydrothermal temperature and time had no appreciable effect from 175 degrees C to 225 degrees C. The removal perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) using the synthesized α-GaOOH was studied. A plausible mechanism for the formation of nanoplates is proposed.

20.
J Nanosci Nanotechnol ; 15(9): 6900-13, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26716262

ABSTRACT

This review article comprehensively discusses the recent development of various environmental applications of Zinc Oxide (ZnO) semiconductor materials. The synthesis of various nano/micro structured ZnO using different methods and the influence of various preparation conditions on ZnO morphology are discussed. The environmental applications of nano/micro structured zinc oxide as an adsorbent, photocatalyst, and catalyst in catalytic ozonation processes are discussed. The adsorption of various organic pollutants and metal ions on the ZnO surface at different conditions are discussed. The ZnO assisted photocatalytic degradation of pollutants, water splitting, and disinfection under various conditions are reported on. Ozonation in the presence of zinc oxide and its influence on the removal of pollutants are also included.

SELECTION OF CITATIONS
SEARCH DETAIL
...