Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 50(45): 9724-37, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21957995

ABSTRACT

The catalytic mechanism of the MgATP-dependent carboxylation of biotin in the biotin carboxylase domain of pyruvate carboxylase from R. etli (RePC) is common to the biotin-dependent carboxylases. The current site-directed mutagenesis study has clarified the catalytic functions of several residues proposed to be pivotal in MgATP-binding and cleavage (Glu218 and Lys245), HCO(3)(-) deprotonation (Glu305 and Arg301), and biotin enolization (Arg353). The E218A mutant was inactive for any reaction involving the BC domain and the E218Q mutant exhibited a 75-fold decrease in k(cat) for both pyruvate carboxylation and the full reverse reaction. The E305A mutant also showed a 75- and 80-fold decrease in k(cat) for both pyruvate carboxylation and the full reverse reaction, respectively. While Glu305 appears to be the active site base which deprotonates HCO(3)(-), Lys245, Glu218, and Arg301 are proposed to contribute to catalysis through substrate binding interactions. The reactions of the biotin carboxylase and carboxyl transferase domains were uncoupled in the R353M-catalyzed reactions, indicating that Arg353 may not only facilitate the formation of the biotin enolate but also assist in coordinating catalysis between the two spatially distinct active sites. The 2.5- and 4-fold increase in k(cat) for the full reverse reaction with the R353K and R353M mutants, respectively, suggests that mutation of Arg353 allows carboxybiotin increased access to the biotin carboxylase domain active site. The proposed chemical mechanism is initiated by the deprotonation of HCO(3)(-) by Glu305 and concurrent nucleophilic attack on the γ-phosphate of MgATP. The trianionic carboxyphosphate intermediate formed reversibly decomposes in the active site to CO(2) and PO(4)(3-). PO(4)(3-) then acts as the base to deprotonate the tethered biotin at the N(1)-position. Stabilized by interactions between the ureido oxygen and Arg353, the biotin-enolate reacts with CO(2) to give carboxybiotin. The formation of a distinct salt bridge between Arg353 and Glu248 is proposed to aid in partially precluding carboxybiotin from reentering the biotin carboxylase active site, thus preventing its premature decarboxylation prior to the binding of a carboxyl acceptor in the carboxyl transferase domain.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Pyruvate Carboxylase/chemistry , Pyruvate Carboxylase/metabolism , Rhizobium etli/enzymology , Adenosine Triphosphate/metabolism , Bacterial Proteins/genetics , Biotin/metabolism , Carbon-Nitrogen Ligases/chemistry , Carbon-Nitrogen Ligases/genetics , Carbon-Nitrogen Ligases/metabolism , Catalytic Domain , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Oxaloacetic Acid/metabolism , Protein Structure, Quaternary , Protein Structure, Tertiary , Pyruvate Carboxylase/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Rhizobium etli/genetics
2.
Int J Biochem Cell Biol ; 40(9): 1743-52, 2008.
Article in English | MEDLINE | ID: mdl-18272421

ABSTRACT

Pyruvate carboxylase is a biotin-dependent enzyme in which the biotin is carboxylated by a putative carboxyphosphate intermediate that is formed in a reaction between ATP and bicarbonate. The resultant carboxybiotin then transfers its carboxyl group to pyruvate to form oxaloacetate. In the Bacillus thermodenitrificans enzyme the biotin is covalently attached to K1112. A mutant form of the enzyme (K1112A) has been prepared which is not biotinylated. This mutant did not catalyse the complete reaction, but did catalyse ATP-cleavage and the carboxylation of free biotin. Oxaloacetate decarboxylation was not catalysed, even in the presence of free biotin, suggesting that only the biotin carboxylation domain of the enzyme is accessible to free biotin. This mutant allowed the study of ATP-cleavage both coupled and not coupled to biotin carboxylation. Kinetic analyses of these reactions indicate that the major effect of the enzyme activator, acetyl CoA, is to promote the carboxylation of biotin. Acetyl CoA reduces the K(m)s for both MgATP and biotin. In addition, pH profiles of the ATP-cleavage reaction in the presence and absence of free biotin revealed the involvement of several ionisable residues in both ATP-cleavage and biotin carboxylation. K1112A also catalyses the phosphorylation of ADP from carbamoyl phosphate. Stopped-flow studies using the fluorescent ATP analogue, formycin A-5'-triphosphate, in which nucleotide binding to the holoenzyme was compared to K1112A indicated that the presence of biotin enhanced binding. Attempts to trap the putative carboxyphosphate intermediate in K1112A using diazomethane were unsuccessful.


Subject(s)
Bacillus/enzymology , Biotin/deficiency , Biotin/metabolism , Point Mutation , Pyruvate Carboxylase/genetics , Pyruvate Carboxylase/metabolism , Acetyl Coenzyme A/metabolism , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Apoenzymes/chemistry , Apoenzymes/genetics , Apoenzymes/metabolism , Biotinylation , Carbamyl Phosphate/metabolism , Catalysis , Hydrogen-Ion Concentration , Phosphates/metabolism , Phosphorylation , Pyruvate Carboxylase/chemistry
3.
Science ; 317(5841): 1076-9, 2007 Aug 24.
Article in English | MEDLINE | ID: mdl-17717183

ABSTRACT

Biotin-dependent multifunctional enzymes carry out metabolically important carboxyl group transfer reactions and are potential targets for the treatment of obesity and type 2 diabetes. These enzymes use a tethered biotin cofactor to carry an activated carboxyl group between distantly spaced active sites. The mechanism of this transfer has remained poorly understood. Here we report the complete structure of pyruvate carboxylase at 2.0 angstroms resolution, which shows its domain arrangement. The structure, when combined with mutagenic analysis, shows that intermediate transfer occurs between active sites on separate polypeptide chains. In addition, domain rearrangements associated with activator binding decrease the distance between active-site pairs, providing a mechanism for allosteric activation. This description provides insight into the function of biotin-dependent enzymes and presents a new paradigm for multifunctional enzyme catalysis.


Subject(s)
Biotin/metabolism , Pyruvate Carboxylase/chemistry , Pyruvate Carboxylase/metabolism , Rhizobium etli/enzymology , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/metabolism , Allosteric Regulation , Binding Sites , Catalytic Domain , Coenzyme A/metabolism , Crystallography, X-Ray , Dimerization , Enzyme Activators/metabolism , Models, Molecular , Mutation , Protein Structure, Quaternary , Protein Structure, Secondary , Protein Structure, Tertiary , Pyruvate Carboxylase/genetics
4.
Int J Biochem Cell Biol ; 39(6): 1211-23, 2007.
Article in English | MEDLINE | ID: mdl-17478118

ABSTRACT

Unlike other eukaryotes studied to date, yeast has two genes for pyruvate carboxylase coding for very similar, but not identical, isozymes (Pyc1 and Pyc2), both of which are located in the cytoplasm. We have found that there are marked differences in the kinetic properties of the isozymes potentially leading to differential regulation of Pyc1 and Pyc2 activity by both activators and substrates. For example, Pyc2 is only activated 3.7-fold by acetyl CoA, and 9.6-fold by NH(4)(+), whilst the figures for Pyc1 are 16 and 14.6-fold, respectively. Pyc1 and Pyc2 display different allosteric properties with respect to acetyl CoA activation and aspartate inhibition, with Pyc1 showing a higher degree of cooperativity than Pyc2, even in the absence of aspartate. We have investigated the locus of action in the amino acid sequence of the isozymes of this activator by measuring its regulation of various chimeric constructs of the two isozymes. In this way, we conclude that the main locus of action of acetyl CoA lies in the N-terminal half of the enzyme, within the biotin-carboxylation domain, between amino acids 99 and 478 of Pyc1.


Subject(s)
Acetyl Coenzyme A/pharmacology , Pyruvate Carboxylase/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Amino Acid Sequence , Aspartic Acid/pharmacology , Biotin/metabolism , Enzyme Activation/drug effects , Isoenzymes/genetics , Isoenzymes/metabolism , Kinetics , Molecular Sequence Data , Pyruvate Carboxylase/genetics , Quaternary Ammonium Compounds/pharmacology , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Sequence Homology, Amino Acid
5.
Biochem J ; 405(2): 359-67, 2007 Jul 15.
Article in English | MEDLINE | ID: mdl-17408383

ABSTRACT

PC (pyruvate carboxylase) plays a crucial role in intermediary metabolism including glucose-induced insulin secretion in pancreatic islets. In the present study, we identified two regions of the 1.2 kb distal promoter, the -803/-795 site and the -408/-403 E-box upstream of the transcription start site, as the important cis-acting elements for transcriptional activation of the luciferase reporter gene. Site-directed mutagenesis of either one of these sites in the context of this 1.2 kb promoter fragment, followed by transient transfections in the insulinoma cell line, INS-1, abolished reporter activity by approx. 50%. However, disruption of either the -803/-795 or the -408/-403 site did not affect reporter gene activity in NIH 3T3 cells, suggesting that this promoter fragment is subjected to cell-specific regulation. The nuclear proteins that bound to these -803/-795 and -408/-403 sites were identified by gel retardation assays as HNF3beta (hepatocyte nuclear factor 3beta)/Foxa2 (forkhead/winged helix transcription factor box2) and USFs (upstream stimulatory factors), USF1 and USF2, respectively. Chromatin immunoprecipitation assays using antisera against HNF3beta/Foxa2, USF1 and USF2 demonstrated that endogenous HNF3beta/Foxa2 binds to the -803/-795 Foxa2 site, and USF1 and USF2 bind to the -408/-403 E-box respectively in vivo, consistent with the gel retardation assay results. Although there are weak binding sites located at regions -904 and -572 for PDX1 (pancreatic duodenal homeobox-1), a transcription factor that controls expression of beta-cell-specific genes, it did not appear to regulate PC expression in INS-1 cells in the context of the 1.2 kb promoter fragment. The results presented here show that Foxa2 and USFs regulate the distal promoter of the rat PC gene in a cell-specific manner.


Subject(s)
Gene Expression Regulation/drug effects , Hepatocyte Nuclear Factor 3-beta/physiology , Promoter Regions, Genetic/drug effects , Pyruvate Carboxylase/genetics , Upstream Stimulatory Factors/physiology , Animals , Base Sequence , Cell Line, Tumor , Electrophoretic Mobility Shift Assay , Insulinoma , Molecular Sequence Data , Mutagenesis, Site-Directed , Pancreatic Neoplasms , Promoter Regions, Genetic/genetics , Rats
6.
Eur J Biochem ; 269(3): 961-8, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11846798

ABSTRACT

Insulin-like growth factor (IGF) binding to the type 1 IGF receptor (IGF1R) elicits mitogenic effects, promotion of differentiation and protection from apoptosis. This study has systematically measured IGF1R binding affinities of IGF-I, IGF-II and 14 IGF analogues to a recombinant high-affinity form of the IGF1R using BIAcore technology. The analogues assessed could be divided into two groups: (a) those designed to investigate binding of IGF-binding protein, which exhibited IGF1R-binding affinities similar to those of IGF-I or IGF-II; (b) those generated to probe IGF1R interactions with greatly reduced IGF1R-binding affinities. The relative binding affinities of IGF-I analogues and IGF-I for the IGF1R determined by BIAcore analysis agreed closely with existing data from receptor-binding assays using cells or tissue membranes, demonstrating that BIAcore technology is a powerful tool for measuring affinities of IGFs for IGF1R. In parallel studies, IGF1R-binding affinities were related to ability to protect against serum withdrawal-induced apoptosis in three different assays including Hoechst 33258 staining, cell survival, and DNA fragmentation assays using the rat pheochromocytoma cell line, PC12. In this model system, IGF-I and IGF-II at low nanomolar concentrations are able to prevent apoptosis completely. We conclude that ability to protect against apoptosis is directly related to ability to bind the IGF1R.


Subject(s)
Insulin-Like Growth Factor II/metabolism , Insulin-Like Growth Factor I/metabolism , Receptor, IGF Type 1/metabolism , Animals , Apoptosis/drug effects , Biosensing Techniques , Cricetinae , Insulin-Like Growth Factor I/analogs & derivatives , Insulin-Like Growth Factor I/pharmacology , PC12 Cells , Rats , Receptor, IGF Type 1/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...