Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Metab ; 33(5): 1013-1026.e6, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33609439

ABSTRACT

Mitochondrial respiration is critical for cell proliferation. In addition to producing ATP, respiration generates biosynthetic precursors, such as aspartate, an essential substrate for nucleotide synthesis. Here, we show that in addition to depleting intracellular aspartate, electron transport chain (ETC) inhibition depletes aspartate-derived asparagine, increases ATF4 levels, and impairs mTOR complex I (mTORC1) activity. Exogenous asparagine restores proliferation, ATF4 and mTORC1 activities, and mTORC1-dependent nucleotide synthesis in the context of ETC inhibition, suggesting that asparagine communicates active respiration to ATF4 and mTORC1. Finally, we show that combination of the ETC inhibitor metformin, which limits tumor asparagine synthesis, and either asparaginase or dietary asparagine restriction, which limit tumor asparagine consumption, effectively impairs tumor growth in multiple mouse models of cancer. Because environmental asparagine is sufficient to restore tumor growth in the context of respiration impairment, our findings suggest that asparagine synthesis is a fundamental purpose of tumor mitochondrial respiration, which can be harnessed for therapeutic benefit to cancer patients.


Subject(s)
Activating Transcription Factor 4/metabolism , Asparagine/metabolism , Mitochondria/metabolism , Animals , Asparagine/pharmacology , Aspartic Acid/deficiency , Aspartic Acid/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Diet/veterinary , Electron Transport Chain Complex Proteins/antagonists & inhibitors , Electron Transport Chain Complex Proteins/metabolism , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , Metformin/pharmacology , Metformin/therapeutic use , Mice , Mice, Inbred NOD , Mitochondria/drug effects , Neoplasms/drug therapy , Neoplasms/mortality , Neoplasms/pathology , Nucleotides/metabolism , Survival Rate
2.
Biol Psychiatry ; 84(3): 213-222, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29397902

ABSTRACT

BACKGROUND: Methamphetamine (meth) seeking progressively increases after withdrawal (incubation of meth craving). We previously demonstrated an association between histone deacetylase 5 (HDAC5) gene expression in the rat dorsal striatum and incubation of meth craving. Here we used viral constructs to study the causal role of dorsal striatum HDAC5 in this incubation. METHODS: In experiment 1 (overexpression), we injected an adeno-associated virus bilaterally into dorsal striatum to express either green fluorescent protein (control) or a mutant form of HDAC5, which strongly localized to the nucleus. After training rats to self-administer meth (10 days, 9 hours/day), we tested the rats for relapse to meth seeking on withdrawal days 2 and 30. In experiment 2 (knockdown), we injected an adeno-associated virus bilaterally into the dorsal striatum to express a short hairpin RNA either against luciferase (control) or against HDAC5. After training rats to self-administer meth, we tested the rats for relapse on withdrawal days 2 and 30. We also measured gene expression of other HDACs and potential HDAC5 downstream targets. RESULTS: We found that HDAC5 overexpression in dorsal striatum increased meth seeking on withdrawal day 30 but not day 2. In contrast, HDAC5 knockdown in the dorsal striatum decreased meth seeking on withdrawal day 30 but not on day 2; this manipulation also altered other HDACs (Hdac1 and Hdac4) and potential HDAC5 targets (Gnb4 and Suv39h1). CONCLUSIONS: Results demonstrate a novel role of dorsal striatum HDAC5 in incubation of meth craving. These findings also set up future work to identify HDAC5 targets that mediate this incubation.


Subject(s)
Central Nervous System Stimulants/pharmacology , Craving , Drug-Seeking Behavior , Histone Deacetylases/metabolism , Methamphetamine/pharmacology , Substance Withdrawal Syndrome/metabolism , Animals , Corpus Striatum/drug effects , Corpus Striatum/physiology , Gene Knockdown Techniques , Histone Deacetylases/genetics , Rats , Rats, Sprague-Dawley , Self Administration
3.
J Neurosci ; 38(9): 2270-2282, 2018 02 28.
Article in English | MEDLINE | ID: mdl-29371321

ABSTRACT

Relapse to methamphetamine (Meth) seeking progressively increases after withdrawal from drug self-administration (incubation of Meth craving). We previously demonstrated a role of dorsomedial striatum (DMS) dopamine D1 receptors (D1Rs) in this incubation. Here, we studied the role of afferent glutamatergic projections into the DMS and local D1R-glutamate interaction in this incubation in male rats. We first measured projection-specific activation on day 30 relapse test by using cholera toxin b (retrograde tracer) + Fos (activity marker) double-labeling in projection areas. Next, we determined the effect of pharmacological reversible inactivation of lateral or medial anterior intralaminar nuclei of thalamus (AIT-L or AIT-M) on incubated Meth seeking on withdrawal day 30. We then used an anatomical asymmetrical disconnection procedure to determine whether an interaction between AIT-L→DMS glutamatergic projections and postsynaptic DMS D1Rs contributes to incubated Meth seeking. We also determined the effect of unilateral inactivation of AIT-L and D1R blockade of DMS on incubated Meth seeking, and the effect of contralateral disconnection of AIT-L→DMS projections on nonincubated Meth seeking on withdrawal day 1. Incubated Meth seeking was associated with selective activation of AIT→DMS projections; other glutamatergic projections to DMS were not activated. AIT-L (but not AIT-M) inactivation or anatomical disconnection of AIT-L→DMS projections decreased incubated Meth seeking. Unilateral inactivation of AIT-L or D1R blockade of the DMS had no effect on incubated Meth craving, and contralateral disconnection of AIT-L→DMS projections had no effect on nonincubated Meth seeking. Our results identify a novel role of AIT-L and AIT-L→DMS glutamatergic projections in incubation of drug craving and drug seeking.SIGNIFICANCE STATEMENT Methamphetamine seeking progressively increases after withdrawal from drug self-administration, a phenomenon termed incubation of methamphetamine craving. We previously found that D1R-mediated dopamine transmission in the dorsomedial striatum plays a critical role in this incubation phenomenon. Here, we used neuroanatomical and neuropharmacological methods in rats to demonstrate that an interaction between the glutamatergic projection from the lateral anterior intralaminar nuclei of the thalamus to the dorsomedial striatum and local dopamine D1 receptors plays a critical role in relapse to methamphetamine seeking after prolonged withdrawal. Our study identified a novel motivation-related thalamostriatal projection critical to relapse to drug seeking.


Subject(s)
Central Nervous System Stimulants/pharmacology , Drug-Seeking Behavior/physiology , Intralaminar Thalamic Nuclei/drug effects , Methamphetamine/pharmacology , Neural Pathways/drug effects , Animals , Corpus Striatum/drug effects , Corpus Striatum/physiology , Craving/physiology , Intralaminar Thalamic Nuclei/physiology , Male , Neural Pathways/physiology , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...