Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sens Actuators B Chem ; 185: 587-593, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23956496

ABSTRACT

Uncontrolled fluctuations of ambient temperature in the field typically greatly reduce accuracy of gas sensors. In this study, we developed an approach for the self-correction against fluctuations of ambient temperature of individual gas and vapor sensors. The main innovation of our work is in the temperature correction which is accomplished without the need for a separate uncoated reference sensor or a separate temperature sensor. Our sensors are resonant inductor-capacitor-resistor (LCR) transducers coated with sensing materials and operated as multivariable passive (battery-free) radio-frequency identification (RFID) sensors. Using our developed approach, we performed quantitation of an exemplary vapor over the temperature range from 25 to 40 °C. This technical solution will be attractive in numerous applications where temperature stabilization of a gas sensor or addition of auxiliary temperature or uncoated reference sensors is prohibitive.

2.
Trends Analyt Chem ; 40: 133-145, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-23175590

ABSTRACT

New sensor technologies for homeland security applications must meet the key requirements of sensitivity to detect agents below risk levels, selectivity to provide minimal false-alarm rates, and response speed to operate in high throughput environments, such as airports, sea ports, and other public places. Chemical detection using existing sensor systems is facing a major challenge of selectivity. In this review, we provide a brief summary of chemical threats of homeland security importance; focus in detail on modern concepts in chemical sensing; examine the origins of the most significant unmet needs in existing chemical sensors; and, analyze opportunities, specific requirements, and challenges for wireless chemical sensors and wireless sensor networks (WSNs). We further review a new approach for selective chemical sensing that involves the combination of a sensing material that has different response mechanisms to different species of interest, with a transducer that has a multi-variable signal-transduction ability. This new selective chemical-sensing approach was realized using an attractive ubiquitous platform of battery-free passive radio-frequency identification (RFID) tags adapted for chemical sensing. We illustrate the performance of RFID sensors developed in measurements of toxic industrial materials, humidity-independent detection of toxic vapors, and detection of chemical-agent simulants, explosives, and strong oxidizers.

3.
J Agric Food Chem ; 60(35): 8535-43, 2012 Sep 05.
Article in English | MEDLINE | ID: mdl-22881825

ABSTRACT

Market demands for new sensors for food quality and safety stimulate the development of new sensing technologies that can provide an unobtrusive sensor form, battery-free operation, and minimal sensor cost. Intelligent labeling of food products to indicate and report their freshness and other conditions is one important possible application of such new sensors. This study applied passive (battery-free) radio frequency identification (RFID) sensors for the highly sensitive and selective detection of food freshness and bacterial growth. In these sensors, the electric field generated in the RFID sensor antenna extends from the plane of the RFID sensor and is affected by the ambient environment, providing the opportunity for sensing. This environment may be in the form of a food sample within the electric field of the sensing region or a sensing film deposited onto the sensor antenna. Examples of applications include monitoring of milk freshness, fish freshness, and bacterial growth in a solution. Unlike other food freshness monitoring approaches that require a thin film battery for operation of an RFID sensor and fabrication of custom-made sensors, the passive RFID sensing approach developed here combines the advantages of both battery-free and cost-effective sensor design and offers response selectivity that is impossible to achieve with other individual sensors.


Subject(s)
Food Labeling/instrumentation , Radio Frequency Identification Device , Animals , Costs and Cost Analysis , Fishes , Food Labeling/economics , Food Microbiology , Food Quality , Milk , Remote Sensing Technology
4.
Analyst ; 137(12): 2777-81, 2012 Jun 21.
Article in English | MEDLINE | ID: mdl-22358260

ABSTRACT

We demonstrate roll-to-roll (R2R) fabrication of highly selective, battery-free radio frequency identification (RFID) sensors on a flexible polyethylene terephthalate (PET) polymeric substrate. Selectivity of our developed RFID sensors is provided by measurements of their resonance impedance spectra, followed by the multivariate analysis of spectral features, and correlation of these spectral features to the concentrations of vapors of interest. The multivariate analysis of spectral features also provides the ability for the rejection of ambient interferences. As a demonstration of our R2R fabrication process, we employed polyetherurethane (PEUT) as a "classic" sensing material, extruded this sensing material as 25, 75, and 125-µm thick films, and thermally laminated the films onto RFID inlays, rapidly producing approximately 5000 vapor sensors. We further tested these RFID vapor sensors for their response selectivity toward several model vapors such as toluene, acetone, and ethanol as well as water vapor as an abundant interferent. Our RFID sensing concept features 16-bit resolution provided by the sensor reader, granting a highly desired independence from costly proprietary RFID memory chips with a low-resolution analog input. Future steps are being planned for field-testing of these sensors in numerous conditions.


Subject(s)
Polyethylene Terephthalates/chemistry , Radio Frequency Identification Device/methods , Polyurethanes/chemistry , Time Factors , Volatilization
5.
ACS Comb Sci ; 14(3): 170-8, 2012 Mar 12.
Article in English | MEDLINE | ID: mdl-22270701

ABSTRACT

We have implemented high-throughput spectroscopic screening tools for the investigation of vapor-selectivity of CdSe semiconductor nanocrystals of different size (2.8- and 5.6-nm diameter) upon their incorporation in a library of rationally selected polymeric matrices. This library of resulting sensing materials was exposed to polar and nonpolar vapors in air. Each of the sensing materials demonstrated its own photoluminescence vapor-response patterns. Two criteria for the evaluation of vapor responses of the library of sensing materials included the diversity and the magnitude of sensing responses. We have found several polymer matrices that simultaneously meet these criteria. Our new sensing materials based on polymer-embedded semiconductor nanocrystal reagents of different size promise to overcome photobleaching and short shelf life limitations of traditional fluorescent organic reagent-based sensing materials.


Subject(s)
Cadmium Compounds/chemistry , Nanocomposites/chemistry , Nanoparticles/chemistry , Selenium Compounds/chemistry , Particle Size , Solvents/chemistry , Toluene/chemistry , Volatilization
7.
Biotechnol Prog ; 27(3): 875-84, 2011.
Article in English | MEDLINE | ID: mdl-21538970

ABSTRACT

Single-use biopharmaceutical manufacturing requires monitoring of critical manufacturing parameters. We have developed an approach for passive radio-frequency identification (RFID)-based sensing that converts ubiquitous passive 13.56 MHz RFID tags into inductively coupled sensors. We combine several measured parameters from the resonant sensor antenna with multivariate data analysis and deliver unique capability of multiparameter sensing and rejection of environmental interferences with a single sensor. We demonstrate here the integration of these RFID sensors into single-use biopharmaceutical manufacturing components. We have tested these sensors for over 500 h for measurements of temperature and solution conductivity with the accuracy of 0.1°C (32-48°C range) and accuracy of 0.3-2.9 mS/cm (0.5-230 mS/cm range). We further demonstrate simultaneous temperature and conductivity measurements with an individual RFID sensor with the accuracy of 0.2°C (5-60°C range) and accuracy of 0.9 mS/cm (0.5-183 mS/cm range). Developed RFID sensors provide several important features previously unavailable from other single-use sensing technologies such as the same sensor platform for measurements of physical, chemical, and biological parameters; multi-parameter monitoring with individual sensors; and simultaneous digital identification.


Subject(s)
Biopharmaceutics/instrumentation , Radio Frequency Identification Device , Temperature , Electric Conductivity , Weights and Measures
8.
Anal Chem ; 81(24): 9948-54, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-19916520

ABSTRACT

Enabling trace chemical detection equipment utilized in the field to transduce a biodetection assay would be advantageous from a logistics, training, and maintenance standpoint. Described herein is an assay design that uses an unmodified, commercial off-the-shelf (COTS) ion trap mobility spectrometer to analyze an immunomagnetic enzyme-linked immunosorbant assay (ELISA). The assay, which uses undetectable enzymatic substrates and ELISA-generated detectable products, was optimized to quantitatively report the amount of target in the sample. Optimization of this ELISA design retained the assay specificity and detection limit (approximately 10(3) E. coli per assay) while decreasing the number of user steps and reducing the assay time to 10 min (>9-fold decrease as compared to past studies). Also discussed are previously undescribed, independent substrate/enzyme/product combinations used in the immunomagnetic ELISA. These discoveries allow for the possibility of a quantitative, multiplexed, 10-min assay that is analyzed by the ion trap mobility spectrometer trace chemical detector.


Subject(s)
Enzyme-Linked Immunosorbent Assay/methods , Mass Spectrometry/methods , Alkaline Phosphatase/chemistry , Alkaline Phosphatase/metabolism , Galactosidases/chemistry , Galactosidases/metabolism , Galactosides/chemistry , Glucuronidase/chemistry , Glucuronidase/metabolism , Hydroxyquinolines/chemistry , Nitrophenols/chemistry , Pyridoxal Phosphate/chemistry
9.
J Comb Chem ; 11(4): 598-603, 2009.
Article in English | MEDLINE | ID: mdl-19413291

ABSTRACT

Recently, we have developed battery-free, passive RFID chemical and biological sensors that are attractive in diverse applications where sensor performance is needed at a low cost and when battery-free operation is critical. In this study, we apply this attractive low-cost sensing platform for the combinatorial screening of formulated sensing materials. As a model system, a 6 x 8 array of polymer-coated RFID sensors was constructed to study the combined effects of polymeric plasticizers and annealing temperature. A solid polymer electrolyte Nafion was formulated with five different phthalate plasticizers: dimethyl phthalate, butyl benzyl phthalate, di-(2-ethylhexyl) phthalate, dicapryl phthalate, and diisotridecyl phthalate. These sensing film formulations and control sensing films without a phthalate plasticizer were deposited onto 9-mm diameter RFID sensors, exposed to eight temperatures ranging from 40 to 140 degrees C using a gradient temperature heater, and evaluated for their response stability and gas-selectivity response patterns. This study demonstrated that our RFID-based sensing approach permits rapid cost-effective combinatorial screening of dielectric properties of sensing materials.


Subject(s)
Plasticizers/chemistry , Polymers/chemistry , Radio Frequency Identification Device/methods , Fluorocarbon Polymers/chemistry , Phthalic Acids/chemistry , Radio Frequency Identification Device/economics , Temperature
10.
Appl Opt ; 46(28): 7007-17, 2007 Oct 01.
Article in English | MEDLINE | ID: mdl-17906730

ABSTRACT

We demonstrate a new attractive approach for ubiquitous quantitative chemical or biological sensing when analog signals are acquired from conventional optical disk drives, and these signals are used for quantitative detection of optical changes of sensing films deposited on conventional CD and DVD optical disks. Our developed analytical model of the operation of this Lab-on-DVD system describes the optical response of sensing films deposited onto the read surface of optical disks by taking into account the practical aspects of system performance that include possible reagent leaching effects, water sampling (delivering) efficiency, and possible changes of the film morphology after water removal. By applying a screen-printing process, we demonstrated a laboratory-scale automated production of sensing films with an average thickness of approximately 10 microm and a thickness relative standard deviation of <3% across multiple films. Finally, we developed a system for delivery of water-sample volumes to sensing films on the disk that utilized a multifunctional jewel case assembly.

SELECTION OF CITATIONS
SEARCH DETAIL
...