Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Metab Dispos ; 44(9): 1490-7, 2016 09.
Article in English | MEDLINE | ID: mdl-27402727

ABSTRACT

The existence of a glucuronide conjugate of the major circulating clopidogrel metabolites, called clopidogrel acyl glucuronide (CAG), is already known. However, information regarding its pharmacokinetics (PK), metabolism, and clearance are modest. We investigated in vivo the potential CAG trans-esterification to clopidogrel (reaction occurring in vitro in particular conditions) by administering the metabolite to mice. Experiments were then carried out on men, clopidogrel administered alone or followed by activated charcoal intake (intestinal reabsorption blockade). Study objectives included: PK comparison of CAG, clopidogrel carboxylic acid (CCA), and clopidogrel in plasma, determination of their elimination patterns in urine and feces, and tracking of charcoal-induced changes in PK and/or urinary excretion that would indicate relevant enterohepatic recycling of CAG. In mice, CAG was rapidly hydrolyzed to CCA after oral administration, whereas by intravenous route metabolic conversion to CCA was delayed. No levels of clopidogrel were detected in mice plasma, excluding any potential trans-esterification or other form of back-conversion in vivo. PK experiments in man showed that CAG is hydrolyzed in the gastrointestinal tract (very low concentrations in feces), but there is no evidence of enterohepatic recirculation. Quantitation of the three moieties in stool samples accounted for only 1.2% of an administered dose, suggesting that other yet unknown metabolites/degradation products formed through metabolic processes and/or the activity of local microflora are mainly excreted by this route. In man CAG was confirmed as one of the major terminal metabolites of clopidogrel, with a PK behavior similar to CCA.


Subject(s)
Glucuronides/pharmacokinetics , Platelet Aggregation Inhibitors/pharmacokinetics , Ticlopidine/analogs & derivatives , Adolescent , Adult , Animals , Clopidogrel , Female , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Ticlopidine/pharmacokinetics , Young Adult
2.
Anal Chem ; 74(9): 2014-20, 2002 May 01.
Article in English | MEDLINE | ID: mdl-12033301

ABSTRACT

A stable three-layer flow system, water/organic solvent/water, has been successfully applied for the first time in a microchannel to get rapid transport through an organic liquid membrane. In the continuous laminar flow region, the analyte (methyl red) was rapidly extracted across the microchannel from the donor to the acceptor phase through the organic solvent phase (cyclohexane). Thermal lens microscopy was used to monitor the process. The thickness of the organic phase, sandwiched by the two aqueous phases, was approximately 64 microm, and it was considered as a thin liquid organic membrane. Permeability studies showed the effects of molecular diffusion, layer thickness, and organic solvent-water partition coefficient on the molecular transport. In the microchip, complete equilibration was achieved in several seconds, in contrast to a conventionally used apparatus, where it takes tens of minutes. The thickness of the organic and aqueous boundary layers was defined as equal to the microchannel dimensions, and the organic solvent-water partition coefficient was determined on a microchip using the liquid/liquid extraction system. Experimental data on molecular transport across the organic membrane were in agreement with the calculated permeability based on the three-compartment water/organic solvent/water model. This kind of experiment can be performed only in a microspace, and the system can be considered as a potential biological membrane for future in vitro study of drug transport.


Subject(s)
Membranes, Artificial , Technology, Pharmaceutical/methods , Azo Compounds , Biological Transport , Diffusion , Microchemistry/instrumentation , Models, Biological , Permeability , Solvents , Technology, Pharmaceutical/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...