Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Spectrosc ; 75(2): 127-136, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33016770

ABSTRACT

The impact of altering laser focusing conditions on laser-induced breakdown spectroscopy experiments is investigated under ambient Earth laboratory and simulated Martian atmospheres. Experiments were performed in which the focal spot size was varied on a sample by altering the lens to sample distance with respect to targets of interest. Samples investigated include aluminum, copper, and steel. Specific neutral and ionic transitions of each sample were monitored. Atomic and ionic emissions show different intensity peak distributions along the varying lens to sample distance. Ionic species have peak emissions when laser plasma is initiated with a focused spot within the sample in ambient Earth laboratory air, while atomic emissions have peak intensities several millimeters deeper into a sample. In simulated Martian atmospheres, atomic emissions are observed to peak when the laser is focused within the sample, while ionic emissions have peak intensities when the laser is focused near the surface of a sample.

2.
Molecules ; 25(4)2020 Feb 22.
Article in English | MEDLINE | ID: mdl-32098440

ABSTRACT

This article discusses laser-induced laboratory-air plasma measurements and analysis of hydroxyl (OH) ultraviolet spectra. The computations of the OH spectra utilize line strength data that were developed previously and that are now communicated for the first time. The line strengths have been utilized extensively in interpretation of recorded molecular emission spectra and have been well-tested in laser-induced fluorescence applications for the purpose of temperature inferences from recorded data. Moreover, new experiments with Q-switched laser pulses illustrate occurrence of molecular recombination spectra for time delays of the order of several dozen of microseconds after plasma initiation. The OH signals occur due to the natural humidity in laboratory air. Centrifugal stretching of the Franck-Condon factors and r-centroids are included in the process of determining the line strengths that are communicated as a Supplementary File. Laser spectroscopy applications of detailed OH computations include laser-induced plasma and combustion analyses, to name but two applications. This work also includes literature references that address various diagnosis applications.


Subject(s)
Gases/chemistry , Hydroxyl Radical/chemistry , Spectrum Analysis , Lasers , Light , Temperature
3.
Molecules ; 25(3)2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32023810

ABSTRACT

This article reports new measurements of laser-induced plasma hypersonic expansion measurements of diatomic molecular cyanide (CN). Focused, high-peak-power 1064 nm Q-switched radiation of the order of 1 TW/cm 2 generated optical breakdown plasma in a cell containing a 1:1 molar gas mixture of N 2 and CO 2 at a fixed pressure of 1.1 × 10 5 Pascal and in a 100 mL/min flow of the mixture. Line-of-sight (LOS) analysis of recorded molecular spectra indicated the outgoing shockwave at expansion speeds well in excess of Mach 5. Spectra of atomic carbon confirmed increased electron density near the shockwave, and, equally, molecular CN spectra revealed higher excitation temperature near the shockwave. Results were consistent with corresponding high-speed shadowgraphs obtained by visualization with an effective shutter speed of 5 nanoseconds. In addition, LOS analysis and the application of integral inversion techniques allow inferences about the spatiotemporal plasma distribution.


Subject(s)
Carbon/chemistry , Cyanides/chemistry , Lasers , Spatio-Temporal Analysis
4.
Appl Spectrosc ; 72(5): 787-792, 2018 May.
Article in English | MEDLINE | ID: mdl-29336588

ABSTRACT

A novel method of determining the total uncertainty in the integrated intensity of fitted emission lines in multipeaked emission spectra is presented. The proposed method does not require an assumption of the type of line profile to be specified. The absolute difference between a fit and measured spectrum defines the uncertainty of the integrated signal intensity and is subsequently decomposed to determine the uncertainty of each peak in multiline fits. Decomposition relies on tabulating a weighting factor, which describes how each peak contributes to the total integral uncertainty. Applications of this method to quantitative approaches in laser-induced breakdown spectroscopy analysis are described.

5.
Appl Spectrosc ; 68(9): 992-6, 2014.
Article in English | MEDLINE | ID: mdl-25226252

ABSTRACT

We report temperature inferences from time-resolved emission spectra of a micro-sized plasma following laser ablation of an aluminum sample. The laser-induced breakdown event is created with the use of nanosecond pulsed laser radiation. Plasma temperatures are inferred from the aluminum monoxide spectroscopic emissions of the aluminum sample by fitting experimental to theoretically calculated spectra with a nonlinear fitting algorithm. The synthetic spectra used as a comparison for the experimental spectra are generated from accurate line strengths of aluminum monoxide bands. The inferred plasma temperatures are found to be 5315 ± 100 K at 20 µs following breakdown. At later time delays of 45 and 70 µs following breakdown, the plasma temperatures are found to be 4875 ± 95 and 4390 ± 80 K, respectively. Error analysis of the inferred temperatures is performed with the fitting algorithm.

6.
Appl Spectrosc ; 68(3): 362-6, 2014.
Article in English | MEDLINE | ID: mdl-24666953

ABSTRACT

The temperature in an aluminized propellant is determined as a function of height and plume depth from diatomic AlO and thermal emission spectra. Higher in the plume, 305 and 508 mm from the burning surface, measured AlO emission spectra show an average temperature with 1σ errors of 2980 ± 80 K. Lower in the plume, 152 mm from the burning surface, an average AlO emission temperature of 2450 ± 100 K is inferred. The thermal emission analysis yields higher temperatures when using constant emissivity. Particle size effects along the plume are investigated using wavelength-dependent emissivity models.

7.
J Vis Exp ; (84): e51250, 2014 Feb 14.
Article in English | MEDLINE | ID: mdl-24561875

ABSTRACT

In this work, we present time-resolved measurements of atomic and diatomic spectra following laser-induced optical breakdown. A typical LIBS arrangement is used. Here we operate a Nd:YAG laser at a frequency of 10 Hz at the fundamental wavelength of 1,064 nm. The 14 nsec pulses with anenergy of 190 mJ/pulse are focused to a 50 µm spot size to generate a plasma from optical breakdown or laser ablation in air. The microplasma is imaged onto the entrance slit of a 0.6 m spectrometer, and spectra are recorded using an 1,800 grooves/mm grating an intensified linear diode array and optical multichannel analyzer (OMA) or an ICCD. Of interest are Stark-broadened atomic lines of the hydrogen Balmer series to infer electron density. We also elaborate on temperature measurements from diatomic emission spectra of aluminum monoxide (AlO), carbon (C2), cyanogen (CN), and titanium monoxide (TiO). The experimental procedures include wavelength and sensitivity calibrations. Analysis of the recorded molecular spectra is accomplished by the fitting of data with tabulated line strengths. Furthermore, Monte-Carlo type simulations are performed to estimate the error margins. Time-resolved measurements are essential for the transient plasma commonly encountered in LIBS.


Subject(s)
Aluminum Oxide/chemistry , Carbon/chemistry , Hydrogen/chemistry , Nitriles/chemistry , Spectrum Analysis/methods , Titanium/chemistry , Lasers, Solid-State , Optics and Photonics/methods , Plasma Gases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...