Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Phys Condens Matter ; 34(23)2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35045403

ABSTRACT

W- and Mo-oxides form an interesting class of materials, featuring structural complexities, stoichiometric flexibility, and versatile physical and chemical properties that render them attractive for many applications in diverse fields of nanotechnologies. In nanostructured form, novel properties and functionalities emerge as a result of quantum size and confinement effects. In this topical review, W- and Mo-oxide nanosystems are examined with particular emphasis on two-dimensional (2D) layers and small molecular-type clusters. We focus on the epitaxial growth of 2D layers on metal single crystal surfaces and investigate their novel geometries and structures by a surface science approach. The coupling between the oxide overlayer and the metal substrate surface is a decisive element in the formation of the oxide structures and interfacial strain and charge transfer are shown to determine the lowest energy structures. Atomic structure models as determined by density functional theory (DFT) simulations are reported and discussed for various interface situations, with strong and weak coupling. Free-standing (quasi-)2D oxide layers, so-called oxide nanosheets, are attracting a growing interest recently in the applied research community because of their easy synthesis via wet-chemical routes. Although they consist typically of several atomic layers thick-not always homogeneous-platelet systems, their quasi-2D character induces a number of features that make them attractive for optoelectronic, sensor or biotechnological device applications. A brief account of recently published preparation procedures of W- and Mo-oxide nanosheets and some prototypical examples of proof of concept applications are reported here. (MO3)3(M = W, Mo) clusters can be generated in the gas phase in nearly monodisperse form by a simple vacuum sublimation technique. These clusters, interesting molecular-type structures by their own account, can be deposited on a solid surface in a controlled way and be condensed into 2D W- and Mo-oxide layers; solid-state chemical reactions with pre-deposited surface oxide layers to form 2D ternary oxide compounds (tungstates, molybdates) have also been reported. The clusters have been proposed as model systems for molecular studies of reactive centres in catalytic reactions. Studies of the catalysis of (MO3)3clusters in unsupported and supported forms, using the conversion of alcohols as model reactions, are discussed. Finally, we close with a brief outlook of future perspectives.

2.
J Phys Chem Lett ; 7(7): 1303-9, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-26988695

ABSTRACT

An ultrathin two-dimensional CeO2 (ceria) phase on a Cu(110) surface has been fabricated and fully characterized by high-resolution scanning tunneling microscopy, photoelectron spectroscopy, and density functional theory. The atomic lattice structure of the ceria/Cu(110) system is revealed as a hexagonal CeO2(111)-type monolayer separated from the Cu(110) surface by a partly disordered Cu-O intercalated buffer layer. The epitaxial coupling of the two-dimensional ceria overlayer to the Cu(110)-O surface leads to a nanoscopic stripe pattern, which creates defect regions of quasi-periodic lattice distortions. The symmetry and lattice mismatch at the interface is clarified to be responsible for the topographic stripe geometry and the related anisotropic strain defect regions at the ceria surface. This ceria monolayer is in a fully oxidized and thermodynamically stable state.


Subject(s)
Cerium/chemistry , Copper/chemistry , Adsorption , Models, Molecular , Oxidation-Reduction , Photoelectron Spectroscopy , Surface Properties , Thermodynamics
3.
Materials (Basel) ; 8(8): 5205-5215, 2015 Aug 11.
Article in English | MEDLINE | ID: mdl-28793499

ABSTRACT

The growth morphology and structure of ceria nano-islands on a stepped Au(788) surface has been investigated by scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED). Within the concept of physical vapor deposition, different kinetic routes have been employed to design ceria-Au inverse model catalysts with different ceria nanoparticle shapes and arrangements. A two-dimensional superlattice of ceria nano-islands with a relatively narrow size distribution (5 ± 2 nm²) has been generated on the Au(788) surface by the postoxidation method. This reflects the periodic anisotropy of the template surface and has been ascribed to the pinning of ceria clusters and thus nucleation on the fcc domains of the herringbone reconstruction on the Au terraces. In contrast, the reactive evaporation method yields ceria islands elongated in [01-1] direction, i.e., parallel to the step edges, with high aspect ratios (~6). Diffusion along the Au step edges of ceria clusters and their limited step crossing in conjunction with a growth front perpendicular to the step edges is tentatively proposed to control the ceria growth under reactive evaporation conditions. Both deposition recipes generate two-dimensional islands of CeO2(111)-type O-Ce-O single and double trilayer structures for submonolayer coverages.

4.
Nanoscale ; 6(18): 10589-95, 2014 Sep 21.
Article in English | MEDLINE | ID: mdl-25075914

ABSTRACT

Manipulation of chemistry and film growth via external electric fields is a longstanding goal in surface science. Numerous systems have been predicted to show such effects but experimental evidence is sparse. Here we demonstrate in a custom-designed UHV apparatus that the application of spatially extended, homogeneous, very high (>1 V nm(-1)) DC-fields not only changes the system energetics but triggers dynamic processes which become important much before static contributions appreciably modify the potential energy landscape. We take a well characterized ultrathin NiO film on a Ag(100) support as a proof-of-principle test case, and show how it gets reduced to supported Ni clusters under fields exceeding the threshold of +0.9 V nm(-1). Using an effective model, we trace the observed interfacial redox process down to a dissociative electron attachment resonant mechanism. The proposed approach can be easily implemented and generally applied to a wide range of interfacial systems, thus opening new opportunities for the manipulation of film growth and reaction processes at solid surfaces under strong external fields.

5.
ACS Nano ; 8(4): 3947-54, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24617647

ABSTRACT

Metal tungstates (with general formula MWO4) are functional materials with a high potential for a diverse set of applications ranging from low-dimensional magnetism to chemical sensing and photoelectrocatalytic water oxidation. For high level applications, nanoscale control of film growth is necessary, as well as a deeper understanding and characterization of materials properties at reduced dimensionality. We succeeded in fabricating and characterizing a two-dimensional (2-D) copper tungstate (CuWO4). For the first time, the atomic structure of an ultrathin ternary oxide is fully unveiled. It corresponds to a CuWO4 monolayer arranged in three sublayers with stacking O-W-O/Cu from the interface. The resulting bidimensional structure forms a robust framework with localized regions of anisotropic flexibility. Electronically it displays a reduced band gap and increased density of states close to the Fermi level with respect to the bulk compound. These unique features open a way for new applications in the field of photo- and electrocatalysis, while the proposed synthesis method represents a radically new and general approach toward the fabrication of 2-D ternary oxides.

7.
Phys Rev Lett ; 108(19): 195507, 2012 May 11.
Article in English | MEDLINE | ID: mdl-23003060

ABSTRACT

A bottom-up approach to produce a long-range ordered superlattice of monodisperse and isomorphic metal-oxide nanoparticles (NP) supported onto an oxide substrate is demonstrated. The synthetic strategy consists of self-assembling metallic NP on an ultrathin nanopatterned aluminum oxide template followed by a morphology-conserving oxidation process, and is exemplified in the case of Ni, but is generally applicable to a wide range of metallic systems. Both fully oxidized and core-shell metal-metal-oxide particles are synthesized, up to 3-4 nm in diameter, and characterized via spectroscopic and theoretical tools. This opens up a new avenue for probing unit and ensemble effects on the properties of oxide materials in the nanoscale regime.


Subject(s)
Nanoparticles/chemistry , Nickel/chemistry , Aluminum/chemistry , Aluminum Oxide/chemistry , Microscopy, Scanning Tunneling , Nanoparticles/ultrastructure , Oxidation-Reduction , Particle Size
9.
Langmuir ; 26(21): 16474-80, 2010 Nov 02.
Article in English | MEDLINE | ID: mdl-20527835

ABSTRACT

Distinct one-dimensional (1D) oxide nanowires decorating the step edges of a stepped Pd(1 1 9) surface are formed by partial and complete oxidation of a 1D Mn-Pd alloy. Under full postoxidation treatment at 470-570 K, 1D MnO(2) nanowires coupled pseudomorphically to the Pd steps are obtained. Oxidized nanowires, which maintain the basic structural pattern of the 1D Mn-Pd alloy, are instead prepared by exposure of the Mn-Pd alloy to O(2) at 90 K and subsequent short heating to 400 K. A relatively weak Mn-O bonding characterizes these oxidized alloy wires, which are readily reduced by reaction with CO at moderate temperature (350 K). The here reported system emphasizes the influence of kinetic constraints in the formation of oxide nanostructures.


Subject(s)
Alloys/chemistry , Manganese/chemistry , Nanowires/chemistry , Oxides/chemistry , Palladium/chemistry , Adsorption , Oxidation-Reduction , Oxygen/chemistry , Particle Size , Surface Properties
10.
J Phys Condens Matter ; 22(22): 222202, 2010 Jun 09.
Article in English | MEDLINE | ID: mdl-21393736

ABSTRACT

Co atoms and dimers embedded in a Cu(110)(2 × 1)-O surface oxide are investigated via low-temperature STM/STS experiments and first-principles simulations. It is found that Co dimers incorporated into adjacent rows of the Cu(110)(2 × 1)-O reconstruction show Kondo resonances decoupled from each other, whereas they are antiferromagnetically coupled (and do not exhibit a Kondo effect) when they are aligned on the same row. This shows that it is possible to decouple single carriers of the Kondo effect via a proper choice of the adsorption and host geometry. It is also shown that an oxidic environment presents features remarkably different from those of pure metal substrates.

SELECTION OF CITATIONS
SEARCH DETAIL
...