Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Syst ; 15(1): 83-103.e11, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38198894

ABSTRACT

The currently predominant approach to transcriptomic and epigenomic single-cell analysis depends on a rigid perspective constrained by reduced dimensions and algorithmically derived and annotated clusters. Here, we developed Seqtometry (sequencing-to-measurement), a single-cell analytical strategy based on biologically relevant dimensions enabled by advanced scoring with multiple gene sets (signatures) for examination of gene expression and accessibility across various organ systems. By utilizing information only in the form of specific signatures, Seqtometry bypasses unsupervised clustering and individual annotations of clusters. Instead, Seqtometry combines qualitative and quantitative cell-type identification with specific characterization of diverse biological processes under experimental or disease conditions. Comprehensive analysis by Seqtometry of various immune cells as well as other cells from different organs and disease-induced states, including multiple myeloma and Alzheimer's disease, surpasses corresponding cluster-based analytical output. We propose Seqtometry as a single-cell sequencing analysis approach applicable for both basic and clinical research.


Subject(s)
Gene Expression Profiling , Transcriptome , Sequence Analysis, RNA/methods , Gene Expression Profiling/methods , Single-Cell Analysis/methods , Cluster Analysis
2.
Front Immunol ; 14: 1326440, 2023.
Article in English | MEDLINE | ID: mdl-38179045

ABSTRACT

Crosstalk between innate and adaptive immunity is pivotal for an efficient immune response and to maintain immune homeostasis under steady state conditions. As part of the innate immune system, type 2 innate lymphoid cells (ILC2s) have emerged as new important regulators of tissue homeostasis and repair by fine-tuning innate-adaptive immune cell crosstalk. ILC2s mediate either pro- or anti-inflammatory immune responses in a context dependent manner. Inflammation has proven to be a key driver of atherosclerosis, resembling the key underlying pathophysiology of cardiovascular disease (CVD). Notably, numerous studies point towards an atheroprotective role of ILC2s e.g., by mediating secretion of type-II cytokines (IL-5, IL-13, IL-9). Boosting these protective responses may be suitable for promising future therapy, although these protective cues are currently incompletely understood. Additionally, little is known about the mechanisms by which chemokine/chemokine receptor signaling shapes ILC2 functions in vascular inflammation and atherosclerosis. Hence, this review will focus on the latest findings regarding the protective and chemokine/chemokine receptor guided interplay between ILC2s and other immune cells like T and B cells, dendritic cells and macrophages in atherosclerosis. Further, we will elaborate on potential therapeutic implications which result or could be distilled from the dialogue of ILC2s with cells of the immune system in cardiovascular diseases.


Subject(s)
Atherosclerosis , Immunity, Innate , Humans , Lymphocytes , Inflammation , Receptors, Chemokine , Chemokines
3.
Front Immunol ; 13: 836646, 2022.
Article in English | MEDLINE | ID: mdl-35359955

ABSTRACT

In T cells, processes such as migration and immunological synapse formation are accompanied by the dynamic reorganization of the actin cytoskeleton, which has been suggested to be mediated by regulators of RhoGTPases and by F-actin bundlers. SWAP-70 controls F-actin dynamics in various immune cells, but its role in T cell development and function has remained incompletely understood. CD4+ regulatory T (Treg) cells expressing the transcription factor Foxp3 employ diverse mechanisms to suppress innate and adaptive immunity, which is critical for maintaining immune homeostasis and self-tolerance. Here, we propose Swap-70 as a novel member of the Foxp3-dependent canonical Treg cell signature. We show that Swap-70-/- mice have increased numbers of Foxp3+ Treg cells with an effector/memory-like phenotype that exhibit impaired suppressor function in vitro, but maintain overall immune homeostasis in vivo. Upon formation of an immunological synapse with antigen presenting cells in vitro, cytosolic SWAP-70 protein is selectively recruited to the interface in Treg cells. In this context, Swap-70-/- Treg cells fail to downregulate CD80/CD86 on osteoclast precursor cells by trans-endocytosis and to efficiently suppress osteoclastogenesis and osteoclast function. These data provide first evidence for a crucial role of SWAP-70 in Treg cell biology and further highlight the important non-immune function of Foxp3+ Treg cells in bone homeostasis mediated through direct SWAP-70-dependent mechanisms.


Subject(s)
Forkhead Transcription Factors , T-Lymphocytes, Regulatory , Actin Cytoskeleton/metabolism , Actins/metabolism , Animals , Forkhead Transcription Factors/metabolism , Mice , Osteogenesis
4.
Heliyon ; 7(11): e08311, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34805566

ABSTRACT

Homeodomain only protein (Hopx) is a regulator of cell differentiation and function, and it has also emerged as a crucial marker of specific developmental and differentiation potentials. Hopx expression and functions have been identified in some stem cells, tumors, and in certain immune cells. However, expression of Hopx in immune cells remains insufficiently characterized. Here we report a comprehensive pattern of Hopx expression in multiple types of immune cells under steady state conditions. By utilizing single-cell RNA sequencing (scRNA-seq) and flow cytometric analysis, we characterize a constitutive expression of Hopx in specific subsets of CD4+ and CD8+ T cells and B cells, as well as natural killer (NK), NKT, and myeloid cells. In contrast, Hopx expression is not present in conventional dendritic cells and eosinophils. The utility of identifying expression of Hopx in immune cells may prove vital in delineating specific roles of Hopx under multiple immune conditions.

6.
Cell Rep ; 33(8): 108424, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33238127

ABSTRACT

Various processes induce and maintain immune tolerance, but effector T cells still arise under minimal perturbations of homeostasis through unclear mechanisms. We report that, contrary to the model postulating primarily tolerogenic mechanisms initiated under homeostatic conditions, effector programming is an integral part of T cell fate determination induced by antigenic activation in the steady state. This effector programming depends on a two-step process starting with induction of effector precursors that express Hopx and are imprinted with multiple instructions for their subsequent terminal effector differentiation. Such molecular circuits advancing specific terminal effector differentiation upon re-stimulation include programmed expression of interferon-γ, whose production then promotes expression of T-bet in the precursors. We further show that effector programming coincides with regulatory conversion among T cells sharing the same antigen specificity. However, conventional type 2 dendritic cells (cDC2) and T cell functions of mammalian target of rapamycin complex 1 (mTORC1) increase effector precursor induction while decreasing the proportion of T cells that can become peripheral Foxp3+ regulatory T (pTreg) cells.


Subject(s)
Antigens/immunology , CD4 Antigens/immunology , Immune Tolerance/immunology , Animals , Cell Differentiation , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...