Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 66(14): 7195-202, 2006 Jul 15.
Article in English | MEDLINE | ID: mdl-16849566

ABSTRACT

Bearing in mind the limited success of available treatment modalities for the therapy of multidrug-resistant tumor cells, alternative and complementary strategies need to be developed. It is known that the transcriptional activation of genes, such as MDR1 and MRP1, which play a major role in the development of a multidrug-resistant phenotype in tumor cells, involves the Y-box protein YB-1. Thus, YB-1 is a promising target for new therapeutic approaches to defeat multidrug resistance. In addition, it has been reported previously that YB-1 is an important factor in adenoviral replication because it activates transcription from the adenoviral E2-late promoter. Here, we report that an oncolytic adenovirus, named Xvir03, expressing the viral proteins E1B55k and E4orf6, leads to nuclear translocation of YB-1 and in consequence to viral replication and cell lysis in vitro and in vivo. Moreover, we show that Xvir03 down-regulates the expression of MDR1 and MRP1, indicating that recruiting YB-1 to the adenoviral E2-late promoter for viral replication is responsible for this effect. Thus, nuclear translocation of YB-1 by Xvir03 leads to resensitization of tumor cells to cytotoxic drugs. These data reveal a link between chemotherapy and virotherapy based on the cellular transcription factor YB-1 and provide the basis for formulating a model for a novel combined therapy regimen named Mutually Synergistic Therapy.


Subject(s)
Adenoviridae/physiology , Antineoplastic Agents/pharmacology , DNA-Binding Proteins/metabolism , Genes, MDR/genetics , Multidrug Resistance-Associated Proteins/genetics , Oncolytic Virotherapy/methods , Prostatic Neoplasms/therapy , Adenoviridae/genetics , Adenovirus E2 Proteins/genetics , Animals , Cell Nucleus/metabolism , Combined Modality Therapy , Daunorubicin/pharmacology , Docetaxel , Down-Regulation , Gene Expression Regulation, Neoplastic , HeLa Cells , Humans , Male , Mice , Mice, Inbred BALB C , Multidrug Resistance-Associated Proteins/biosynthesis , Nuclear Proteins , Promoter Regions, Genetic , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/virology , Taxoids/pharmacology , Virus Replication , Xenograft Model Antitumor Assays , Y-Box-Binding Protein 1
SELECTION OF CITATIONS
SEARCH DETAIL
...