Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Osteoarthritis Cartilage ; 31(8): 1035-1046, 2023 08.
Article in English | MEDLINE | ID: mdl-37075856

ABSTRACT

OBJECTIVE: Basic Calcium Phosphate (BCP) crystals play an active role in the progression of osteoarthritis (OA). However, the cellular consequences remain largely unknown. Therefore, we characterized for the first time the changes in the protein secretome of human OA articular chondrocytes as a result of BCP stimulation using two unbiased proteomic analysis methods. METHOD: Isolated human OA articular chondrocytes were stimulated with BCP crystals and examined by Quantitative Reverse Transcription PCR (RT-qPCR) and enzyme-linked immune sorbent assay (ELISA) after twenty-four and forty-eight hours. Forty-eight hours conditioned media were analyzed by label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) and an antibody array. The activity of BCP dependent Transforming Growth Factor Beta (TGF-ß) signaling was analyzed by RT-qPCR and luciferase reporter assays. The molecular consequences regarding BCP-dependent TGF-ß signaling on BCP-dependent Interleukin 6 (IL-6) were investigated using specific pathway inhibitors. RESULTS: Synthesized BCP crystals induced IL-6 expression and secretion upon stimulation of human articular chondrocytes. Concomitant induction of catabolic gene expression was observed. Analysis of conditioned media revealed a complex and diverse response with a large number of proteins involved in TGF-ß signaling, both in activation of latent TGF-ß and TGF-ß superfamily members, which were increased compared to non-stimulated OA chondrocytes. Activity of this BCP driven TGF-ß signaling was confirmed by increased activity of expression of TGF-ß target genes and luciferase reporters. Inhibition of BCP driven TGF-ß signaling resulted in decreased IL-6 expression and secretion with a moderate effect on catabolic gene expression. CONCLUSION: BCP crystal stimulation resulted in a complex and diverse chondrocyte protein secretome response. An important role for BCP-dependent TGF-ß signaling was identified in development of a pro-inflammatory environment.


Subject(s)
Chondrocytes , Secretome , Signal Transduction , Transforming Growth Factor beta , Humans , Calcium Phosphates/pharmacology , Chondrocytes/metabolism , Chromatography, Liquid , Culture Media, Conditioned , Interleukin-6/metabolism , Osteoarthritis/metabolism , Proteomics , Tandem Mass Spectrometry , Transforming Growth Factor beta/metabolism
2.
Osteoarthritis Cartilage ; 31(3): 374-385, 2023 03.
Article in English | MEDLINE | ID: mdl-36621590

ABSTRACT

OBJECTIVE: Osteoarthritis-related cartilage extracellular matrix remodeling is dependent on changes in chondrocyte protein expression. Yet, the role of ribosomes in chondrocyte translation regulation is unknown. In this exploratory study, we investigated ribosomal RNA (rRNA) epitranscriptomic-based ribosome heterogeneity in human articular chondrocytes and its relevance for osteoarthritis. METHODS: Sequencing-based rRNA 2'-O-methylation profiling analysis (RiboMethSeq) was performed on non-OA primary human articular chondrocytes (n = 5) exposed for 14 days to osteoarthritic synovial fluid (14 donors, pooled, 20% v/v). The SW1353 SNORD71 KO cell pool was generated using LentiCRISPRv2/Cas9. The mode of translation initiation and fidelity were determined by dual-luciferase reporters. The cellular proteome was analyzed by LC-MS/MS and collagen type I protein expression was evaluated by immunoblotting. Loading of COL1A1 mRNA into polysomes was determined by sucrose gradient ultracentrifugation and fractionation. RESULTS: We discovered that osteoarthritic synovial fluid instigates site-specific changes in the rRNA 2'-O-me profile of primary human articular chondrocytes. We identified five sites with differential 2'-O-me levels. The 2'-O-me status of 5.8S-U14 (one of identified differential 2'-O-me sites; decreased by 7.7%, 95% CI [0.9-14.5%]) was targeted by depleting the level of its guide snoRNA SNORD71 (50% decrease, 95% CI [33-64%]). This resulted in an altered ribosome translation modus (e.g., CrPV IRES, FC 3, 95% CI [2.2-4.1]) and promoted translation of COL1A1 mRNA which led to increased levels of COL1A1 protein (FC 1.7, 95% CI [1.3-2.0]). CONCLUSIONS: Our data identify a novel concept suggesting that articular chondrocytes employ rRNA epitranscriptomic mechanisms in osteoarthritis development.


Subject(s)
Cartilage, Articular , Osteoarthritis , Humans , RNA, Ribosomal/metabolism , Chondrocytes/metabolism , Proteome , Chromatography, Liquid , Tandem Mass Spectrometry , Osteoarthritis/metabolism , Cartilage, Articular/metabolism , RNA, Messenger/metabolism , Cells, Cultured
3.
Osteoarthritis Cartilage ; 30(6): 862-874, 2022 06.
Article in English | MEDLINE | ID: mdl-35176481

ABSTRACT

OBJECTIVES: Alterations in the composition of synovial fluid have been associated with adverse effects on cartilage integrity and function. Here, we examined the phenotypic and proliferative behavior of human articular chondrocytes when cultured in vitro for 13 days with synovial fluid derived from end-stage osteoarthritis patients. MATERIALS AND METHODS: Chondrocyte proliferation and phenotypical changes induced by osteoarthritic synovial fluid were analyzed using DNA staining, RT-qPCR, immunostainings, and immunoblotting. The molecular mechanisms by which osteoarthritic synovial fluid induced fibrosis and proliferation were studied using a phospho-protein antibody array and luciferase-based transcription factor activity assays. Specific pathway inhibitors were used to probe the involvement of pathways in fibrosis and proliferation. RESULTS: Prolonged stimulation with osteoarthritic synovial fluid sustained chondrocyte proliferation and induced profound phenotypic changes, favoring a fibrotic over a chondrogenic or hypertrophic phenotype. A clear loss of chondrogenic markers at both the transcriptional and protein level was observed, while expression of several fibrosis-associated markers were upregulated over time. Phospho-kinase analysis revealed activation of MAPK and RhoGTPase signaling pathways by osteoarthritic synovial fluid, which was confirmed by elevated transcriptional activity of Elk-1 and SRF. Inhibitor studies revealed that ERK played a central role in the loss of chondrocyte phenotype, while EGFR and downstream mediators p38, JNK and Rac/Cdc42 were essential for fibrosis-associated collagen expression. Finally, we identified EGF signaling as a key activator of chondrocyte proliferation. CONCLUSIONS: Osteoarthritic synovial fluid promoted chondrocyte fibrosis and proliferation through EGF receptor activation and downstream MAPK and RhoGTPase signaling.


Subject(s)
Cartilage, Articular , Osteoarthritis , Cartilage, Articular/pathology , Cell Proliferation , Cells, Cultured , Chondrocytes/metabolism , Fibrosis , Humans , Osteoarthritis/metabolism , Synovial Fluid/metabolism
4.
Osteoarthritis Cartilage ; 21(4): 604-13, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23353668

ABSTRACT

OBJECTIVE: Bone morphogenic protein (BMP)-2 and BMP-7 are clinically approved and their recombinant proteins are used for bone tissue regenerative purposes and widely evaluated for cartilage regeneration. Previous comparison of the in vitro chondrogenic characteristics of BMP-2 vs BMP-7 did not address hypertrophic differentiation and characterizing their chondrogenic properties with a focus in on chondrocyte hypertrophy was topic of investigation in this study. DESIGN: Equimolar concentrations of BMP-2 or BMP-7 were added to chondrogenic differentiating ATDC5, human bone marrow stem cells or rabbit periosteal explants. Expression of Col2a1, Sox9, Acan, Col10a1, Runx2, ALP, Mmp13, Mef2c and Bapx1/Nkx3.2 was determined by reverse transcription-quantitative PCR (RT-qPCR) and immunoblotting. Glycosaminoglycan content, cell proliferation capacity and ALP activity were analysed by colourimetric analyses. Expression of Bapx1/Nkx3.2 and Sox9 was targeted by transfection of target specific siRNA duplexes. RESULTS: BMP-2 dose-dependently increased chondrocyte hypertrophy during chondrogenic differentiation of progenitor cells, whereas BMP-7 acted hypertrophy-suppressive and chondro-promotive. Both BMPs did not influence cell proliferation, but they did increase total glycosaminoglycan content. In a candidate approach Bapx1/Nkx3.2 was found to be involved in the BMP-7 mediated suppression of chondrocyte hypertrophy in ATDC5 cells. CONCLUSIONS: BMP-2 and BMP-7 display opposing actions on the chondrogenic outcome of differentiating progenitor cells: BMP-2 acts a specific inducer of chondrocyte hypertrophy, while BMP-7 appears to increase or maintain chondrogenic potential and prevent chondrocyte hypertrophy. Our results pave the way for an application-dependent differential use of BMP-2 or BMP-7.


Subject(s)
Bone Morphogenetic Protein 2/pharmacology , Bone Morphogenetic Protein 7/pharmacology , Chondrocytes/drug effects , Stem Cells/drug effects , Animals , Bone Marrow Cells/drug effects , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cell Enlargement/drug effects , Cells, Cultured , Chondrocytes/cytology , Chondrocytes/pathology , Chondrogenesis/drug effects , Dose-Response Relationship, Drug , Homeodomain Proteins/physiology , Humans , Hypertrophy , Rabbits , Stem Cells/cytology , Transcription Factors/physiology
5.
Osteoarthritis Cartilage ; 20(10): 1170-8, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22796508

ABSTRACT

OBJECTIVE: Three-dimensional (3D) cultures are widely used to redifferentiate chondrocytes. However, the rationale behind the choice for 3D above two-dimensional (2D) cultures is poorly systematically investigated and mainly based on mRNA expression and glycosaminoglycan (GAG) content. The objective was to determine the differential redifferentiation characteristics of human articular chondrocytes (HACs) in monolayer, alginate beads and pellet culture by investigating mRNA expression, protein expression, GAG content and cell proliferation. DESIGN: Dedifferentiated HACs from six individuals were redifferentiated in identical medium conditions for 7 days in monolayer, alginate beads or pellet culture. Read-out parameters were expression of chondrogenic and hypertrophic mRNAs and proteins, GAG content and cell proliferation. RESULTS: 3D cultures specifically expressed chondrogenic mRNAs [collagen type II (COL2A1), SRY (sex determining region Y)-box 9 (SOX9), aggrecan (ACAN)), whereas 2D cultures did not. Hypertrophic mRNAs (collagen type X (COL10A1), runt-related transcription factor 2 (RUNX2), matrix metalloproteinase 13 (MMP13), vascular endothelial growth factor A (VEGFA), osteopontin (OPN), alkaline phosphatase (ALP)) were highly increased in 2D cultures and lower in 3D cultures. Collagen type I (COL1A1) mRNA expression was highest in 3D cultures. Protein expression supports most of the mRNA data, although an important discrepancy was found between mRNA and protein expression of COL2A1 and SOX9 in monolayer culture, stressing on the importance of protein expression analysis. GAG content was highest in 3D cultures, whereas chondrocyte proliferation was almost specific for 2D cultures. CONCLUSIONS: For redifferentiation of dedifferentiated HACs, 3D cultures exhibit the most potent chondrogenic potential, whereas a hypertrophic phenotype is best achieved in 2D cultures. This is the first human study that systematically evaluates the differences between proliferation, GAG content, protein expression and mRNA expression of commonly used 2D and 3D chondrocyte culture techniques.


Subject(s)
Cartilage, Articular/cytology , Cell Dedifferentiation/physiology , Cell Differentiation/physiology , Chondrocytes/cytology , Chondrogenesis/physiology , Arthroplasty, Replacement, Knee , Cartilage, Articular/physiology , Cells, Cultured , Chondrocytes/physiology , Humans , Osteoarthritis, Knee/pathology , Osteoarthritis, Knee/surgery
6.
Eur Cell Mater ; 22: 420-36; discussion 436-7, 2011 Dec 19.
Article in English | MEDLINE | ID: mdl-22183916

ABSTRACT

Skeletogenesis and bone fracture healing involve endochondral ossification, a process during which cartilaginous primordia are gradually replaced by bone tissue. In line with a role for cyclooxygenase-2 (COX-2) in the endochondral ossification process, non-steroidal anti-inflammatory drugs (NSAIDs) were reported to negatively affect bone fracture healing due to impaired osteogenesis. However, a role for COX-2 activity in the chondrogenic phase of endochondral ossification has not been addressed before. We show that COX-2 activity fulfils an important regulatory function in chondrocyte hypertrophic differentiation. Our data reveal essential cross-talk between COX-2 and bone morphogenic protein-2 (BMP-2) during chondrocyte hypertrophic differentiation. BMP-2 mediated chondrocyte hypertrophy is associated with increased COX-2 expression and pharmacological inhibition of COX-2 activity by NSAIDs (e.g., Celecoxib) decreases hypertrophic differentiation in various chondrogenic models in vitro and in vivo, while leaving early chondrogenic development unaltered. Our findings demonstrate that COX-2 activity is a novel factor partaking in chondrocyte hypertrophy in the context of endochondral ossification and these observations provide a novel etiological perspective on the adverse effects of NSAIDs on bone fracture healing and have important implications for the use of NSAIDs during endochondral skeletal development.


Subject(s)
Cell Differentiation , Cell Enlargement , Chondrocytes/drug effects , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2/metabolism , Osteogenesis/drug effects , Pyrazoles/pharmacology , Sulfonamides/pharmacology , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Animals , Antigens, Differentiation/genetics , Antigens, Differentiation/metabolism , Bone Morphogenetic Protein 2/pharmacology , Bone Morphogenetic Protein 2/physiology , Celecoxib , Cell Line , Cell Proliferation , Chondrocytes/cytology , Chondrocytes/enzymology , Collagen Type II/genetics , Collagen Type II/metabolism , Collagen Type X/genetics , Collagen Type X/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/genetics , Gene Expression , Growth Plate/cytology , Growth Plate/drug effects , Membrane Proteins/metabolism , Mice , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...