Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 2798, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37193684

ABSTRACT

Frequency conversion of dissipative solitons associated with the generation of broadband optical frequency combs having a tooth spacing of hundreds of giga-hertz is a topical challenge holding the key to practical applications in precision spectroscopy and data processing. The work in this direction is underpinned by fundamental problems in nonlinear and quantum optics. Here, we present the dissipative two-colour bright-bright and dark-dark solitons in a quasi-phase-matched microresonator pumped for the second-harmonic generation in the near-infrared spectral range. We also found the breather states associated with the pulse front motion and collisions. The soliton regime is found to be typical in slightly phase-mismatched resonators, while the phase-matched ones reveal broader but incoherent spectra and higher-order harmonic generation. Soliton and breather effects reported here exist for the negative tilt of the resonance line, which is possible only via the dominant contribution of second-order nonlinearity.

2.
Opt Lett ; 47(4): 746-749, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35167515

ABSTRACT

Photonic platforms with χ(2) nonlinearity offer new degrees of freedom for Kerr frequency comb development. Here, we demonstrate Kerr soliton generation at 1550 nm with phase-matched quadratic coupling to the 775 nm harmonic band in a single AlN microring and thus the formation of dual-band mode-locked combs. In the strong quadratic coupling regime where the χ(2) phase-matching window overlaps the pump mode, the pump-to-harmonic-comb conversion efficiency is optimized. However, the strong quadratic coupling also drastically modifies the Kerr comb generation dynamics and decreases the probability of soliton generation. By engineering the χ(2) phase-matching wavelength, we are able to achieve a balance between high conversion efficiency and high soliton formation rate under the available pump power and microring quality factors. Our numerical simulations confirm the experimental observations. These findings provide guidance on tailoring single-cavity dual-band coherent comb sources.

3.
Nat Commun ; 12(1): 5428, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34521858

ABSTRACT

Frequency microcombs, alternative to mode-locked laser and fiber combs, enable miniature rulers of light for applications including precision metrology, molecular fingerprinting and exoplanet discoveries. To enable frequency ruling functions, microcombs must be stabilized by locking their carrier-envelope offset frequency. So far, the microcomb stabilization remains compounded by the elaborate optics external to the chip, thus evading its scaling benefit. To address this challenge, here we demonstrate a nanophotonic chip solution based on aluminum nitride thin films, which simultaneously offer optical Kerr nonlinearity for generating octave soliton combs and quadratic nonlinearity for enabling heterodyne detection of the offset frequency. The agile dispersion control of crystalline aluminum nitride photonics permits high-fidelity generation of solitons with features including 1.5-octave spectral span, dual dispersive waves, and sub-terahertz repetition rates down to 220 gigahertz. These attractive characteristics, aided by on-chip phase-matched aluminum nitride waveguides, allow the full determination of the offset frequency. Our proof-of-principle demonstration represents an important milestone towards fully integrated self-locked microcombs for portable optical atomic clocks and frequency synthesizers.

4.
Phys Rev Lett ; 126(13): 133601, 2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33861096

ABSTRACT

Microresonators on a photonic chip could enhance nonlinear optics effects and thus are promising for realizing scalable high-efficiency frequency conversion devices. However, fulfilling phase matching conditions among multiple wavelengths remains a significant challenge. Here, we present a feasible scheme for degenerate sum-frequency conversion that only requires the two-mode phase matching condition. When the drive and the signal are both near resonance to the same telecom mode, an on-chip photon-number conversion efficiency up to 42% is achieved, showing a broad tuning bandwidth over 250 GHz. Furthermore, cascaded Pockels and Kerr nonlinear optical effects are observed, enabling the parametric amplification of the optical signal to distinct wavelengths in a single device. The scheme demonstrated in this Letter provides an alternative approach to realizing high-efficiency frequency conversion and is promising for future studies on communications, atom clocks, sensing, and imaging.

5.
Opt Express ; 29(4): 5497-5504, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33726085

ABSTRACT

Thin-film lithium niobate is an attractive integrated photonics platform due to its low optical loss and favorable optical nonlinear and electro-optic properties. However, in applications such as second harmonic generation, frequency comb generation, and microwave-to-optics conversion, the device performance is strongly impeded by the photorefractive effect inherent in thin-film lithium niobate. In this paper, we show that the dielectric cladding on a lithium niobate microring resonator has a significant influence on the photorefractive effect. By removing the dielectric cladding layer, the photorefractive effect in lithium niobate ring resonators can be effectively mitigated. Our work presents a reliable approach to control the photorefractive effect on thin-film lithium niobate and will further advance the performance of integrated classical and quantum photonic devices based on thin-film lithium niobate.

6.
Opt Lett ; 46(2): 328-331, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33449020

ABSTRACT

Cavity nonlinear optics enables intriguing physical phenomena to occur at micro- or nano-scales with modest input powers. While this enhances capabilities in applications such as comb generation, frequency conversion, and quantum optics, undesired nonlinear effects including photorefraction and thermal bistability are exacerbated. In this Letter, we propose and demonstrate a highly effective method of achieving cavity stabilization using an auxiliary laser for controlling photorefraction in a z-cut periodically poled lithium niobate (LN) microcavity system. Our numerical study accurately models the photorefractive effect under high input powers, guiding future analyses and development of LN microcavity systems.

7.
Phys Rev Lett ; 125(18): 183901, 2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33196267

ABSTRACT

Microcavity solitons enable miniaturized coherent frequency comb sources. However, the formation of microcavity solitons can be disrupted by stimulated Raman scattering, particularly in the emerging crystalline microcomb materials with high Raman gain. Here, we propose and implement dissipation control-tailoring the energy dissipation of selected cavity modes-to purposely raise or lower the threshold of Raman lasing in a strongly Raman-active lithium niobate microring resonator and realize on-demand soliton mode locking or Raman lasing. Numerical simulations are carried out to confirm our analyses and agree well with experiment results. Our work demonstrates an effective approach to address strong stimulated Raman scattering for microcavity soliton generation.

8.
Opt Express ; 28(8): 11144-11155, 2020 Apr 13.
Article in English | MEDLINE | ID: mdl-32403631

ABSTRACT

Nonlinear optical effects in integrated microcavities have been studied extensively with the advantages of strong light-matter interaction, great scalability, and stability due to the small mode volume. However, the pump lasers stimulating nonlinear effects impose obstacles for practical applications, since the material absorption causes thermal resonance drift and instability. Here we experimentally demonstrate an all-optical control of the thermal behavior in optical microcavities for tunable doubly-resonant second-harmonic (SH) generation on an integrated photonic chip. Through an auxiliary control laser, the temperature of a selected microring can be efficiently changed, thus allowing precise frequency tuning of the doubly-resonant wavelength while eliminating the distortion of the lineshape induced by the thermo-optic effect. Although the phase-matching conditions will limit the tuning range of 55GHz, the technique is still potential to achieve a larger tuning range in combination with temperature regulation. Additionally, this approach has the advantage of quick reconfiguration, showing a fast modulation rate up to about 256 kHz. The theoretical model behind our experimental scheme is universal and applicable to other microcavity-enhanced nonlinear optical processes, and our work paves the way for controlling and utilizing the thermal effect in the applications of microcavities.

9.
Nat Commun ; 10(1): 2971, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-31278261

ABSTRACT

Ultraviolet frequency combs enable applications ranging from precision spectroscopy to atomic clocks by addressing electronic transitions of atoms and molecules. Access to ultraviolet light via integrated nonlinear optics is usually hampered by the strong material dispersion and large waveguide attention in ultraviolet regions. Here we demonstrate a simple route to chip-scale ultraviolet comb generators, simultaneously showing a gap-free frequency span of 128 terahertz and high conversion efficiency. This process relies on adiabatic quadratic frequency translation of a near-visible supercontinuum sourced by an ultrafast fiber laser. The simultaneous cubic and quadratic nonlinear processes are implemented in single-crystalline aluminum nitride thin films, where chirp-modulated taper waveguides are patterned to ensure a broad phase matching. The heterodyne characterization suggests that both the near-visible and ultraviolet supercontinuum combs maintain high coherence. Our approach is also adaptable to other non-centrosymmetric photonic platforms for ultrafast nonlinear optics with scalable bandwidth.

10.
Opt Lett ; 44(12): 3182-3185, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-31199411

ABSTRACT

Chip-based soliton frequency combs have been demonstrated on various material platforms, offering broadband, mutually coherent, and equally spaced frequency lines desired for many applications. Lithium niobate (LN), possessing both second- and third-order optical nonlinearities, as well as integrability on insulating substrates, has emerged as a novel source for microcomb generation and controlling. Here we demonstrate mode-locked soliton microcombs generated around 2 µm in a high-Q z-cut LN microring resonator. The intracavity photorefractive effect is found to be still dominant over the thermal effect in the 2 µm region, which facilitates direct accessing soliton states in the red-detuned regime, as reported in the telecom band. We also find that intracavity stimulated Raman scattering is greatly suppressed when moving the pump wavelength from the telecom band to 2 µm, thus alleviating Raman-Kerr comb competition. This Letter expands mode-locked LN microcombs to 2 µm, and could enable a variety of potential applications based on LN nanophotonic platform.

11.
Opt Lett ; 44(5): 1150-1153, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30821735

ABSTRACT

To extend the coherence of quantum transitions for laser locking, as well as increase the compactness and stability of the experimental setup, we propose to utilize photonic integrated resonators with high second-harmonic (SH) generation efficiencies as reliable frequency doublers that link the desired frequencies with the frequency references. In this Letter, a sufficiently strong SH signal up to microwatts was generated by a photonic integrated frequency doubler using a milliwatt infrared (IR) laser source. Furthermore, an increased SH generation bandwidth covering Rb85 and Rb87D2 transition lines, as well as saturated absorption spectroscopy, was demonstrated by tuning the pump power and chip temperature. Here we present, to the best of our knowledge, the first successful locking of an IR laser to Rb saturated absorption lines via a photonic chip frequency doubler.

12.
Opt Lett ; 44(6): 1492-1495, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30874684

ABSTRACT

We demonstrate octave-spanning supercontinuum generation in unpoled lithium niobate waveguides, which are engineered to possess anomalous dispersion and pumped by a turn-key femtosecond laser centered at 1560 nm. Tunable dispersive waves and strong phase-matched second-harmonic generation are both observed by controlling the widths of the waveguides. The major features of the experimental spectra are reproduced by numerical modeling of the generalized nonlinear Schrödinger equation, which can be used to guide waveguide designs for tailoring the supercontinuum spectrum. Our results identify a path to a simple and integrable supercontinuum source in lithium niobate nanophotonic platform and will enable new capabilities in precision frequency metrology.

13.
Opt Lett ; 43(11): 2696-2699, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29856370

ABSTRACT

Nonlinear optical effects have been studied extensively in microresonators as more photonics applications transitions to integrated on-chip platforms. Due to low optical losses and small mode volumes, microresonators are demonstrably the state-of-the-art platform for second-harmonic generation (SHG). However, the working bandwidth of such microresonator-based devices is relatively small, presenting a challenge for applications where a specifically targeted wavelength needs to be addressed. In this Letter, we analyze the phase-matching window and resonance wavelength with respect to varying microring widths, radii, and temperatures. A chip with precise design parameters was fabricated with phase matching realized at the exact wavelength of a two-photon transition of Rb85. This procedure can be generalized to any target pump wavelength in the telecom band with picometer precision.

SELECTION OF CITATIONS
SEARCH DETAIL
...