Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Scientifica (Cairo) ; 2024: 2200993, 2024.
Article in English | MEDLINE | ID: mdl-38974771

ABSTRACT

Stevia (Stevia rebaudiana), recognized for its low-calorie, sugar-free attributes, and various health benefits, has potential applications beyond human consumption, particularly in agriculture. This study explored the potential uses of Stevia in both agricultural and healthcare contexts by examining its plant-inhibitory, cytotoxic, and antioxidant effects. The methanolic extract of Stevia leaves was fractionated into hexane, ethyl acetate, chloroform, and water fractions. These fractions were then subjected to the bioassay analyses above and underwent identification of their chemical constituents. The results indicated that the ethyl acetate fraction demonstrated significant inhibitory effects on weed germination and growth of Beggars tick (Bidens frondosa) (100% inhibition at 1000 ppm of dose). This fraction also exhibited the highest antioxidant activity, total phenolic, and total flavonoid contents (IC50 DPPH = 18.67 µg/mL, 103.50 mg GAE/g fraction, and 410.16 mg QE/g fraction, respectively). In contrast, the chloroform fraction showed the highest cytotoxic effect (LC50 = 700.01 ppm) in the brine shrimp (Artemia salina) mortality evaluation. Pearson's correlation analysis revealed a positive correlation among plant inhibitory effects, antioxidant potentials, and phenolic/flavonoid contents of Stevia. FTIR spectra confirmed the presence of phenols and nonpolar components in the ethyl acetate and chloroform fractions. In addition, GC-MS analysis successfully identified Stevia's key constituents, including tetracontane, hexadecane, hexadecanoic acid, methyl ester in the ethyl acetate fraction, and spiro [4.5] decan-7-one and 6-hydroxy-4,4,7a-trimethyl-5,6,7,7a-tetrahydrobenzofuran-2(4H)-one in the chloroform fraction. This study underscores the potential of S. rebaudiana as a source of natural antioxidants and herbicides, offering valuable insights into its diverse applications in agriculture.

2.
Mar Drugs ; 19(11)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34822480

ABSTRACT

Cardiovascular disease represents a leading cause of mortality and is often characterized by the emergence of endothelial dysfunction (ED), a physiologic condition that takes place in the early progress of atherosclerosis. In this study, two cytoprotective peptides derived from blue mussel chymotrypsin hydrolysates with the sequence of EPTF and FTVN were purified and identified. Molecular mechanisms underlying the cytoprotective effects against oxidative stress which lead to human umbilical vein endothelial cells (HUVEC) injury were investigated. The results showed that pretreatment of EPTF, FTVN and their combination (1:1) in 0.1 mg/mL significantly reduced HUVEC death due to H2O2 exposure. The cytoprotective mechanism of these peptides involves an improvement in the cellular antioxidant defense system, as indicated by the suppression of the intracellular ROS generation through upregulation of the cytoprotective enzyme heme oxygenase-1. In addition, H2O2 exposure triggers HUVEC damage through the apoptosis process, as evidenced by increased cytochrome C release, Bax protein expression, and the elevated amount of activated caspase-3, however in HUVEC pretreated with peptides and their combination, the presence of those apoptotic stimuli was significantly decreased. Each peptide showed similar cytoprotective effect but no synergistic effect. Taken together, these peptides may be especially important in protecting against oxidative stress-mediated ED.


Subject(s)
Bivalvia , Protective Agents/pharmacology , Protein Hydrolysates/pharmacology , Animals , Apoptosis/drug effects , Coronary Artery Disease/drug therapy , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Hydrogen Peroxide , Protective Agents/chemistry , Protective Agents/therapeutic use , Protein Hydrolysates/chemistry , Protein Hydrolysates/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...