Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ChemSusChem ; 14(21): 4793-4801, 2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34459146

ABSTRACT

Electrocatalytic oxidation of ammonia is an appealing, low-temperature process for the sustainable production of nitrites and nitrates that avoids the formation of pernicious N2 O and can be fully powered by renewable electricity. Currently, however, the number of known efficient catalysts for such a reaction is limited. The present work demonstrates that copper-based electrodes exhibit high electrocatalytic activity and selectivity for the NH3 oxidation to NO2 - and NO3 - in alkaline solutions. Systematic investigation of the effects of pH and potential on the kinetics of the reaction using voltammetric analysis andin situ Raman spectroscopy suggest that ammonia electrooxidation on copper occurrs via two primary catalytic mechanisms. In the first pathway, NH3 is converted to NO2 - via a homogeneous electrocatalytic process mediated by redox transformations of aqueous [Cu(OH)4 ]-/2- species, which dissolve from the electrode. The second pathway is the heterogeneous catalytic oxidation of NH3 on the electrode surface favoring the formation of NO3 - . By virtue of its nature, the homogeneous-mediated pathway enables higher selectivity and was less affected by electrode poisoning with the strongly adsorbed "N" intermediates that have plagued the electrocatalytic ammonia oxidation field. Thus, the selectivity of the Cu-catalyzed NH3 oxidation towards either nitrite or nitrate can be achieved through balancing the kinetics of the two mechanisms by adjusting the pH of the electrolyte medium and potential.

2.
Science ; 372(6547): 1187-1191, 2021 06 11.
Article in English | MEDLINE | ID: mdl-34112690

ABSTRACT

Ammonia (NH3) is a globally important commodity for fertilizer production, but its synthesis by the Haber-Bosch process causes substantial emissions of carbon dioxide. Alternative, zero-carbon emission NH3 synthesis methods being explored include the promising electrochemical lithium-mediated nitrogen reduction reaction, which has nonetheless required sacrificial sources of protons. In this study, a phosphonium salt is introduced as a proton shuttle to help resolve this limitation. The salt also provides additional ionic conductivity, enabling high NH3 production rates of 53 ± 1 nanomoles per second per square centimeter at 69 ± 1% faradaic efficiency in 20-hour experiments under 0.5-bar hydrogen and 19.5-bar nitrogen. Continuous operation for more than 3 days is demonstrated.

3.
Nat Commun ; 11(1): 5546, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33144566

ABSTRACT

Ammonia is of emerging interest as a liquefied, renewable-energy-sourced energy carrier for global use in the future. Electrochemical reduction of N2 (NRR) is widely recognised as an alternative to the traditional Haber-Bosch production process for ammonia. However, though the challenges of NRR experiments have become better understood, the reported rates are often too low to be convincing that reduction of the highly unreactive N2 molecule has actually been achieved. This perspective critically reassesses a wide range of the NRR reports, describes experimental case studies of potential origins of false-positives, and presents an updated, simplified experimental protocol dealing with the recently emerging issues.

4.
Adv Mater ; 32(18): e1904804, 2020 May.
Article in English | MEDLINE | ID: mdl-31762106

ABSTRACT

It has become apparent that renewable energy sources are plentiful in many, often remote, parts of the world, such that storing and transporting that energy has become the key challenge. For long-distance transportation by pipeline and bulk tanker, a liquid form of energy carrier is ideal, focusing attention on liquid hydrogen and ammonia. Development of high-activity and selectivity electrocatalyst materials to produce these energy carriers by reductive electrochemistry has therefore become an important area of research. Here, recent developments and challenges in the field of electrocatalytic materials for these processes are discussed, including the hydrogen evolution reaction (HER), the oxygen evolution reaction (OER), and the nitrogen reduction reaction (NRR). Some of the mis-steps currently plaguing the nitrogen reduction to ammonia field are highlighted. The rapidly growing roles that in situ/operando and quantum chemical studies can play in new electromaterials discovery are also surveyed.

5.
Nat Commun ; 10(1): 5599, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31811129

ABSTRACT

Efficient generation of hydrogen from water-splitting is an underpinning chemistry to realize the hydrogen economy. Low cost, transition metals such as nickel and iron-based oxides/hydroxides have been regarded as promising catalysts for the oxygen evolution reaction in alkaline media with overpotentials as low as ~200 mV to achieve 10 mA cm-2, however, they are generally unsuitable for the hydrogen evolution reaction. Herein, we show a Janus nanoparticle catalyst with a nickel-iron oxide interface and multi-site functionality for a highly efficient hydrogen evolution reaction with a comparable performance to the benchmark platinum on carbon catalyst. Density functional theory calculations reveal that the hydrogen evolution reaction catalytic activity of the nanoparticle is induced by the strong electronic coupling effect between the iron oxide and the nickel at the interface. Remarkably, the catalyst also exhibits extraordinary oxygen evolution reaction activity, enabling an active and stable bi-functional catalyst for whole cell water-splitting with, to the best of our knowledge, the highest energy efficiency (83.7%) reported to date.

6.
ChemSusChem ; 11(19): 3416-3422, 2018 Oct 11.
Article in English | MEDLINE | ID: mdl-30091299

ABSTRACT

The electrochemical nitrogen reduction reaction (NRR) under ambient conditions is a promising alternative to the traditional energy-intensive Haber-Bosch process to produce NH3 . The challenge is to achieve a sufficient energy efficiency, yield rate, and selectivity to make the process practical. Here, we demonstrate that Ru nanoparticles (NPs) enable NRR in 0.01 m HCl aqueous solution at very high energy efficiency, that is, very low overpotentials. Remarkably, the NRR occurs at a potential close to or even above the H+ /H2 reversible potential, significantly enhancing the NRR selectivity versus the production of H2 . NH3 yield rates as high as ≈5.5 mg h-1 m-2 at 20 °C and 21.4 mg h-1 m-2 at 60 °C were achieved at a redox potential (E) of -100 mV versus the reversible hydrogen electrode (RHE), whereas a highest Faradaic efficiency (FE) of ≈5.4 % is achievable at E=+10 mV vs. RHE. This work demonstrates the potential use of Ru NPs as an efficient catalyst for NRR at ambient conditions. This ability to catalyze NRR at potentials near or above RHE is imperative in improving the NRR selectivity towards a practical process as well as rendering the H2 viable as byproduct. Density functional theory calculations of the mechanism suggest that the efficient NRR process occurring on these predominantly Ru (0 0 1) surfaces is catalyzed by a dissociative mechanism.

7.
ACS Appl Mater Interfaces ; 8(51): 35513-35522, 2016 Dec 28.
Article in English | MEDLINE | ID: mdl-27991771

ABSTRACT

The role of carbon nanotubes in the advancement of energy conversion and storage technologies is undeniable. In particular, carbon nanotubes have attracted significant applications for electrocatalysis. However, one central issue related to the use of carbon nanotubes is the required oxidative pretreatment that often leads to significant damage of graphitic structures which deteriorates their electrochemical properties. Traditionally, the oxidized carbon nanomaterials are treated at high temperature under an inert atmosphere to repair the oxidation-induced defect sites, which simultaneously removes a significant number of oxygen functional groups. Nevertheless, recent studies have shown that oxygen functional groups on the surface of MWCNT are the essential active centers for a number of important electrocatalytic reactions such as hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). Herein we first show that hydrothermal treatment as a mild method to improve the electrochemical properties and activities of surface-oxidized MWCNT for OER, HER, and ORR without significantly altering the oxygen content. The results indicate that hydrothermal treatment could potentially repair the defects without significantly reducing the pre-existing oxygen content, which has never been achieved before with conventional high-temperature annealing treatment.

8.
Inorg Chem ; 55(11): 5585-91, 2016 Jun 06.
Article in English | MEDLINE | ID: mdl-27163481

ABSTRACT

Taking advantage of a continuous-flow apparatus, the iridium(III)-containing polytungstate cluster K12Na2H2[Ir2Cl8P2W20O72]·37H2O (1) was obtained in a reasonable yield (13% based on IrCl3·H2O). Compound 1 was characterized by Fourier transform IR, UV-visible, (31)P NMR, electrospray ionization mass spectrometry (ESI-MS), and thermogravimetric analysis measurements. (31)P NMR, ESI-MS, and elemental analysis all indicated 1 was a new polytungstate cluster compared with the reported K14[(IrCl4)KP2W20O72] compound. Intriguingly, the successful isolation of 1 relied on the custom-built flow apparatus, demonstrating the uniqueness of continuous-flow chemistry to achieve crystalline materials. The catalytic properties of 1 were assessed by investigating the activity on catalyzing the electro-oxidation of ruthenium tris-2,2'-bipyridine [Ru(bpy)3](2+/3+). The voltammetric behavior suggested a coupled catalytic behavior between [Ru(bpy)3](3+/2+) and 1. Furthermore, on the highly oriented pyrolytic graphite surface, 1,3,5-tris(10-carboxydecyloxy) benzene (TCDB) was used as the two-dimensional host network to coassemble cluster 1; the surface morphology was observed by scanning tunneling microscope technique. "S"-shape of 1 was observed, indicating that the cluster could be accommodated in the cavity formed by two TCDB host molecules, leading to a TCDB/cluster binary structure.

9.
Chem Commun (Camb) ; 52(38): 6439-42, 2016 May 11.
Article in English | MEDLINE | ID: mdl-27097802

ABSTRACT

Carbon black (CB) is popularly used as a catalyst support for metal/metal oxide nanoparticles due to its large surface area, excellent conductivity and stability. Herein, we show that surface oxidized CB itself, after acidic treatment and electrochemical oxidation, exhibits significant catalytic activity for the electrochemical oxidation of water and alcohols.

10.
J Am Chem Soc ; 137(8): 2901-7, 2015 Mar 04.
Article in English | MEDLINE | ID: mdl-25658670

ABSTRACT

Large-scale storage of renewable energy in the form of hydrogen (H2) fuel via electrolytic water splitting requires the development of water oxidation catalysts that are efficient and abundant. Carbon-based nanomaterials such as carbon nanotubes have attracted significant applications for use as substrates for anchoring metal-based nanoparticles. We show that, upon mild surface oxidation, hydrothermal annealing and electrochemical activation, multiwall carbon nanotubes (MWCNTs) themselves are effective water oxidation catalysts, which can initiate the oxygen evolution reaction (OER) at overpotentials of 0.3 V in alkaline media. Oxygen-containing functional groups such as ketonic C═O generated on the outer wall of MWCNTs are found to play crucial roles in catalyzing OER by altering the electronic structures of the adjacent carbon atoms and facilitates the adsorption of OER intermediates. The well-preserved microscopic structures and highly conductive inner walls of MWCNTs enable efficient transport of the electrons generated during OER.


Subject(s)
Nanotubes, Carbon/chemistry , Oxygen/chemistry , Catalysis , Electrochemistry , Models, Molecular , Molecular Conformation , Oxidation-Reduction , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...