Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Public Health ; 2023: 5823207, 2023.
Article in English | MEDLINE | ID: mdl-36747499

ABSTRACT

This research aimed to assess the effectiveness of nanocellulose biofilter (NCB) made from pineapple peel waste to reduce the number of microbes in water. Further processing of cellulose from nata de pina into nano size was proposed, then transformed into a filter membrane. Three types of NCB were developed: bacterial cellulose acetate membrane, bacterial cellulose acetate membrane with TiO2 treatment, and bacterial cellulose acetate membrane with TiO2 and graphite nanoplatelet treatment. These NCBs were used to filter microbes in several water sources in Padang City, West Sumatra Province. The filtering process was carried out using a filter holder where the NCB had been installed. The number of microbes contained in the water, including E. Coli, was determined before and after filtering. As a result, all NCBs reduced the total microbes in water by about 50%. Furthermore, when applied to water pollutant bacteria, E. Coli, all prepared NCBs reduced them by more than 90%. The effectiveness of all NCBs to remove microbes' contamination, especially bacteria, looks very promising with or without TiO2 and graphene reinforcement. Although the efficacy of all NBC for microbial water purification was relatively similar, further experiments to clarify the superior of TiO2 and graphite nanoplatelet on NCB need to be carried out, especially in reducing chemical contamination.


Subject(s)
Ananas , Graphite , Water Purification , Water , Escherichia coli , Bacteria
2.
Int J Biol Macromol ; 235: 123705, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-36801305

ABSTRACT

Agricultural waste is considered a promising source for bacterial cellulose production. This study aims to observe the influence of TiO2 nanoparticles and graphene on the characteristic of bacterial cellulose acetate-based nanocomposite membranes for bacterial filtration in waters. Bacterial cellulose was produced from the pineapple peel waste using fermentation process. High-pressure homogenization process was applied to reduce bacterial nanocellulose size and esterification process was carried out to produce cellulose acetate. Nanocomposite membranes were synthesized with reinforcement of TiO2 nanoparticles 1 % and graphene nanopowder 1 %. The nanocomposite membrane was characterized using an FTIR, SEM, XRD, BET, tensile testing, and bacterial filtration effectiveness using the plate count method. The results showed that the main cellulose structure was identified at the diffraction angle 22° and the cellulose structure slightly changed at the peak of diffraction angles of 14° and 16°. In addition, the crystallinity of bacterial cellulose increased from 72.5 % to 75.9 %, and the functional group analysis showed that several peak shifts indicated a change in the functional group of membrane. Similarly, the surface morphology of membrane became rougher with the structure of mesoporous membrane. Moreover, adding TiO2 and graphene increases crystallinity and bacterial filtration effectiveness of nanocomposite membrane.


Subject(s)
Graphite , Nanocomposites , Nanoparticles , Graphite/chemistry , Cellulose/chemistry , Nanocomposites/chemistry , Nanoparticles/chemistry , Bacteria
SELECTION OF CITATIONS
SEARCH DETAIL
...