Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Neurochem Res ; 49(4): 895-918, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38117448

ABSTRACT

Naturally occurring peptides, such as rubiscolins derived from spinach leaves, have been shown to possess some interesting activities. They exerted central effects, such as antinociception, memory consolidation and anxiolytic-like activity. The fact that rubiscolins are potent even when given orally makes them very promising drug candidates. The present work tested whether rubiscolin-6 (R-6, Tyr-Pro-Leu-Asp-Leu-Phe) analogs have neuroprotective and anti-inflammatory effects. These hypotheses were tested in the 6-hydroxydopamine (6-OHDA) injury model of human neuroblastoma SH-SY5Y and lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The determination of reactive oxygen species (ROS), mitochondrial membrane potential (MMP), Caspase-3 activity, lipid peroxidation and nitric oxide (NO) production allowed us to determine the effects of peptides on hallmarks related to Parkinson's Disease (PD) and inflammation. Additionally, we investigated the impact of R-6 analogs on serine-threonine kinase (also known as protein kinase B, AKT) and mammalian target of rapamycin (mTOR) activation. The treatment with analogs 3 (Tyr-Inp-Leu-Asp-Leu-Phe-OH), 5 (Dmt-Inp-Leu-Asp-Leu-Phe-OH) and 7 (Tyr-Inp-Leu-Asp-Leu-Phe-NH2) most effectively prevented neuronal death via attenuation of ROS, mitochondrial dysfunction and Caspase-3 activity. Peptides 5 and 7 significantly increased the protein expression of the phosphorylated-AKT (p-AKT) and phosphorylated-mTOR (p-mTOR). Additionally, selected analogs could also ameliorate LPS-mediated inflammation in macrophages via inhibition of intracellular generation of ROS and NO production. Our findings suggest that R-6 analogs exert protective effects, possibly related to an anti-oxidation mechanism in in vitro model of PD. The data shows that the most potent peptides can inhibit 6-OHDA injury by activating the PI3-K/AKT/mTOR pathway, thus playing a neuroprotective role and may provide a rational and robust approach in the design of new therapeutics or even functional foods.


Subject(s)
Neuroblastoma , Neuroprotective Agents , Parkinson Disease , Peptide Fragments , Ribulose-Bisphosphate Carboxylase , Humans , Apoptosis , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Oxidopamine/toxicity , Caspase 3/metabolism , Lipopolysaccharides/pharmacology , Cell Line, Tumor , Neuroblastoma/metabolism , Parkinson Disease/drug therapy , TOR Serine-Threonine Kinases/metabolism , Peptides/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
2.
Int J Mol Sci ; 23(19)2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36233079

ABSTRACT

Peptides have revealed a large range of biological activities with high selectivity and efficiency for the development of new drugs, including neuroprotective agents. Therefore, this work investigates the neuroprotective properties of naturally occurring peptides, endomorphin-1 (EM-1), endomorphin-2 (EM-2), rubiscolin-5 (R-5), and rubiscolin-6 (R-6). We aimed at answering the question of whether well-known opioid peptides can counteract cell injury in a common in vitro model of Parkinson's disease (PD). Antioxidant activity of these four peptides was evaluated by the 2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging activity, oxygen radical absorbance capacity (ORAC), and ferric-reducing antioxidant power (FRAP) assays, while neuroprotective effects were assessed in a neurotoxic model induced by 6-hydroxydopamine (6-OHDA) in a human neuroblastoma cell line (SH-SY5Y). The mechanisms associated with neuroprotection were investigated by the determination of mitochondrial membrane potential (MMP), reactive oxygen species (ROS) production, and Caspase-3 activity. Among the tested peptides, endomorphins significantly prevented neuronal death induced by 6-OHDA treatment, decreasing MMP (EM-1) or Caspase-3 activity (EM-2). Meanwhile, R-6 showed antioxidant potential by FRAP assay and exhibited the highest capacity to recover the neurotoxicity induced by 6-OHDA via attenuation of ROS levels and mitochondrial dysfunction. Generally, we hypothesize that peptides' ability to suppress the toxic effect induced by 6-OHDA may be mediated by different cellular mechanisms. The protective effect caused by endomorphins results in an antiapoptotic effect (mitochondrial protection and decrease in Caspase-3 activity), while R-6 potency to increase a cell's viability seems to be mediated by reducing oxidative stress. Our results may provide new insight into neurodegeneration and support the short peptides as a potent drug candidate to treat PD. However, further studies should be conducted on the detailed mechanisms of how tested peptides could suppress neuronal injuries.


Subject(s)
Neuroblastoma , Neuroprotective Agents , Neurotoxicity Syndromes , Parkinson Disease , Antioxidants/pharmacology , Antioxidants/therapeutic use , Apoptosis , Caspase 3/metabolism , Cell Line, Tumor , Cell Survival , Humans , Neuroblastoma/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Opioid Peptides/pharmacology , Oxidopamine/pharmacology , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Reactive Oxygen Species/metabolism
3.
Molecules ; 27(19)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36235032

ABSTRACT

The growing knowledge about the harmful effects caused by some synthetic ingredients present in skincare products has led to an extensive search for natural bioactives. Thus, this study aimed to investigate the dermatological potential of five fractions (F1-F5), obtained by a sequential extraction procedure, from the brown seaweed Saccorhiza polyschides. The antioxidant (DPPH, FRAP, ORAC and TPC), anti-enzymatic (collagenase, elastase, hyaluronidase and tyrosinase), antimicrobial (Staphylococcus epidermidis, Cutibacterium acnes and Malassezia furfur), anti-inflammatory (nitric oxide, tumor necrosis factor-α, interleukin-6 and interleukin-10) and photoprotective (reactive oxygen species) properties of all fractions were evaluated. The ethyl acetate fraction (F3) displayed the highest antioxidant and photoprotective capacity, reducing ROS levels in UVA/B-exposed 3T3 fibroblasts, and the highest anti-enzymatic capacity against tyrosinase (IC50 value: 89.1 µg/mL). The solid water-insoluble fraction (F5) revealed the greatest antimicrobial activity against C. acnes growth (IC50 value: 12.4 µg/mL). Furthermore, all fractions demonstrated anti-inflammatory potential, reducing TNF-α and IL-6 levels in RAW 264.7 macrophages induced with lipopolysaccharides. Chemical analysis of the S. polyschides fractions by NMR revealed the presence of different classes of compounds, including lipids, polyphenols and sugars. The results highlight the potential of S. polyschides to be incorporated into new nature-based skincare products.


Subject(s)
Anti-Infective Agents , Phaeophyceae , Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Collagenases , Hyaluronoglucosaminidase , Interleukin-10 , Interleukin-6 , Lipopolysaccharides , Monophenol Monooxygenase , Nitric Oxide , Pancreatic Elastase , Plant Extracts/chemistry , Reactive Oxygen Species , Sugars , Tumor Necrosis Factor-alpha , Water
4.
Biology (Basel) ; 11(3)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35336831

ABSTRACT

Resulting from the growing human population and the long dependency on fossil-based energies, the planet is facing a critical rise in global temperature, which is affecting all ecosystem networks. With a growing consciousness this issue, the EU has defined several strategies towards environment sustainability, where biodiversity restoration and preservation, pollution reduction, circular economy, and energetic transition are paramount issues. To achieve the ambitious goal of becoming climate-neutral by 2050, it is vital to mitigate the environmental footprint of the energetic transition, namely heavy metal pollution resulting from mining and processing of raw materials and from electronic waste disposal. Additionally, it is vital to find alternative materials to enhance the efficiency of energy storage devices. This review addresses the environmental challenges associated with energetic transition, with particular emphasis on the emergence of new alternative materials for the development of cleaner energy technologies and on the environmental impacts of mitigation strategies. We compile the most recent advances on natural sources, particularly seaweed, with regard to their use in metal recycling, bioremediation, and as valuable biomass to produce biochar for electrochemical applications.

5.
Mar Drugs ; 19(11)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34822503

ABSTRACT

Inflammation is a double-edged sword, as it can have both protective effects and harmful consequences, which, combined with oxidative stress (OS), can lead to the development of deathly chronic inflammatory conditions. Over the years, research has evidenced the potential of marine sponges as a source of effective anti-inflammatory therapeutic agents. Within this framework, the purpose of this study was to evaluate the antioxidant and the anti-inflammatory potential of the marine sponge Cliona celata. For this purpose, their organic extracts (C1-C5) and fractions were evaluated concerning their radical scavenging activity through 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC), and anti-inflammatory activity through a (lipopolysaccharides (LPS)-induced inflammation on RAW 264.7 cells) model. Compounds present in the two most active fractions (F5 and F13) of C4 were tentatively identified by gas chromatography coupled to mass spectrometry (GC-MS). Even though samples displayed low antioxidant activity, they presented a high anti-inflammatory capacity in the studied cellular inflammatory model when compared to the anti-inflammatory standard, dexamethasone. GC-MS analysis led to the identification of n-hexadecanoic acid, cis-9-hexadecenal, and 13-octadecenal in fraction F5, while two major compounds, octadecanoic acid and cholesterol, were identified in fraction F13. The developed studies demonstrated the high anti-inflammatory activity of the marine sponge C. celata extracts and fractions, highlighting its potential for further therapeutic applications.


Subject(s)
Antineoplastic Agents/pharmacology , Porifera , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Aquatic Organisms , Cell Line, Tumor/drug effects , HT29 Cells/drug effects , Humans , Lipopolysaccharides , Mice , Portugal , RAW 264.7 Cells/drug effects
6.
PLoS One ; 16(5): e0250954, 2021.
Article in English | MEDLINE | ID: mdl-33983974

ABSTRACT

Marine fungi and, particularly, endophytic species have been recognised as one of the most prolific sources of structurally new and diverse bioactive secondary metabolites with multiple biotechnological applications. Despite the increasing number of bioprospecting studies, very few have already evaluated the cosmeceutical potential of marine fungal compounds. Thus, this study focused on a frequent seaweed in the Portuguese coast, Halopteris scoparia, to identify the endophytic marine fungi associated with this host, and assess their ability to biosynthesise secondary metabolites with antioxidative, enzymatic inhibitory (hyaluronidase, collagenase, elastase and tyrosinase), anti-inflammatory, photoprotective, and antimicrobial (Cutibacterium acnes, Staphylococcus epidermidis and Malassezia furfur) activities. The results revealed eight fungal taxa included in the Ascomycota, and in the most representative taxonomic classes in marine ecosystems (Eurotiomycetes, Sordariomycetes and Dothideomycetes). These fungi were reported for the first time in Portugal and in association with H. scoparia, as far as it is known. The screening analyses showed that most of these endophytic fungi were producers of compounds with relevant biological activities, though those biosynthesised by Penicillium sect. Exilicaulis and Aspergillus chevalieri proved to be the most promising ones for being further exploited by dermocosmetic industry. The chemical analysis of the crude extract from an isolate of A. chevalieri revealed the presence of two bioactive compounds, echinulin and neoechinulin A, which might explain the high antioxidant and UV photoprotective capacities exhibited by the extract. These noteworthy results emphasised the importance of screening the secondary metabolites produced by these marine endophytic fungal strains for other potential bioactivities, and the relevance of investing more efforts in understanding the ecology of halo/osmotolerant fungi.


Subject(s)
Ascomycota/metabolism , Endophytes/metabolism , Phaeophyceae/microbiology , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Ascomycota/enzymology , Ascomycota/isolation & purification , Bioprospecting/methods , Ecosystem , Endophytes/enzymology , Fungi/isolation & purification , Fungi/metabolism , Fungi, Unclassified/isolation & purification , Fungi, Unclassified/metabolism , Microbial Sensitivity Tests , Portugal , Seaweed/microbiology
7.
Pharmacol Res ; 168: 105589, 2021 06.
Article in English | MEDLINE | ID: mdl-33812007

ABSTRACT

The treatment of Parkinson´s disease (PD) has benefited from significant advances resulting from the increasing research efforts focused on new therapeutics. However, the current treatments for PD are mostly symptomatic, alleviating disease symptoms without reversing or retarding disease progression. Thus, it is critical to find new molecules that can result in more effective treatments. Within this framework, this study aims to evaluate the neuroprotective and anti-inflammatory effects of three compounds (eleganolone, eleganonal and fucosterol) isolated from the brown seaweed Bifurcaria bifurcata. In vitro neuroprotective effects were evaluated on a PD cellular model induced by the neurotoxin 6-hydroxydopamine (6-OHDA) on SH-SY5Y human cells, while lipopolysaccharide (LPS) - stimulated RAW 264.7 macrophages were used to evaluate the anti-inflammatory potential. Additionally, the underlying mechanisms of action were also investigated. Compounds were isolated by preparative chromatographic methods and their structural elucidation attained by NMR spectroscopy. Among the tested compounds, eleganolone (0.1-1 µM; 24 h) reverted the neurotoxicity induced by 6-OHDA in about 20%. The neuroprotective effects were mediated by mitochondrial protection, reduction of oxidative stress, inflammation and apoptosis, and inhibition of NF-kB pathway. The results suggest that eleganolone may provide advantages in the treatment of neurodegenerative conditions and, therefore, should be considered for future preclinical studies.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Diterpenes/pharmacology , Neuroprotective Agents/pharmacology , Parkinson Disease/drug therapy , Animals , Cell Line, Tumor , Cytokines/analysis , Diterpenes/therapeutic use , Humans , Mice , Nitric Oxide/biosynthesis , RAW 264.7 Cells , Seaweed/chemistry , Transcription Factor RelA/metabolism
8.
Mar Drugs ; 19(3)2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33671016

ABSTRACT

The ever-increasing interest in keeping a young appearance and healthy skin has leveraged the skincare industry. This, coupled together with the increased concern regarding the safety of synthetic products, has boosted the demand for new and safer natural ingredients. Accordingly, the aim of this study was to evaluate the dermatological potential of the brown seaweed Carpomitra costata. The antioxidant, anti-enzymatic, antimicrobial, photoprotective and anti-inflammatory properties of five C. costata fractions (F1-F5) were evaluated. The ethyl acetate fraction (F3) demonstrated the most promising results, with the best ability to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals (EC50 of 140.1 µg/mL) and the capacity to reduce reactive oxygen species (ROS) production promoted by UVA and UVB radiation in 3T3 cells, revealing its antioxidant and photoprotective potential. This fraction also exhibited the highest anti-enzymatic capacity, inhibiting the activities of collagenase, elastase and tyrosinase (IC50 of 7.2, 4.8 and 85.9 µg/mL, respectively). Moreover, F3 showed anti-inflammatory potential, reducing TNF-α and IL-6 release induced by LPS treatment in RAW 264.7 cells. These bioactivities may be related to the presence of phenolic compounds, such as phlorotannins, as demonstrated by NMR analysis. The results highlight the potential of C. costata as a source of bioactive ingredients for further dermatological applications.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Dermatologic Agents/isolation & purification , Phaeophyceae/chemistry , 3T3 Cells , Animals , Anti-Inflammatory Agents/isolation & purification , Antioxidants/isolation & purification , Dermatologic Agents/pharmacology , Free Radical Scavengers/isolation & purification , Free Radical Scavengers/pharmacology , Inhibitory Concentration 50 , Mice , Phenols/isolation & purification , Phenols/pharmacology , RAW 264.7 Cells , Reactive Oxygen Species/metabolism
9.
Int J Mol Sci ; 22(4)2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33672866

ABSTRACT

Parkinsons Disease (PD) is the second most common neurodegenerative disease worldwide, and is characterized by a progressive degeneration of dopaminergic neurons. Without an effective treatment, it is crucial to find new therapeutic options to fight the neurodegenerative process, which may arise from marine resources. Accordingly, the goal of the present work was to evaluate the ability of the monoterpenoid lactone Loliolide, isolated from the green seaweed Codium tomentosum, to prevent neurological cell death mediated by the neurotoxin 6-hydroxydopamine (6-OHDA) on SH-SY5Y cells and their anti-inflammatory effects in RAW 264.7 macrophages. Loliolide was obtained from the diethyl ether extract, purified through column chromatography and identified by NMR spectroscopy. The neuroprotective effects were evaluated by the MTT method. Cells' exposure to 6-OHDA in the presence of Loliolide led to an increase of cells' viability in 40%, and this effect was mediated by mitochondrial protection, reduction of oxidative stress condition and apoptosis, and inhibition of the NF-kB pathway. Additionally, Loliolide also suppressed nitric oxide production and inhibited the production of TNF-α and IL-6 pro-inflammatory cytokines. The results suggest that Loliolide can inspire the development of new neuroprotective therapeutic agents and thus, more detailed studies should be considered to validate its pharmacological potential.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Benzofurans/pharmacology , Chlorophyta/chemistry , Lactones/pharmacology , Monoterpenes/pharmacology , Neurodegenerative Diseases/drug therapy , Animals , Anti-Inflammatory Agents/chemistry , Benzofurans/chemistry , Cell Line, Tumor , Cytokines/metabolism , DNA Fragmentation/drug effects , Humans , Lactones/chemistry , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Membrane Potential, Mitochondrial/drug effects , Mice , Molecular Structure , Monoterpenes/chemistry , NF-kappa B/metabolism , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Nitric Oxide/metabolism , RAW 264.7 Cells , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...