Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
ACS Omega ; 9(12): 13994-14004, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38559919

ABSTRACT

Pyridinic N-type doped at carbon has been known to have better electrocatalytic activity toward the oxygen reduction reaction (ORR) than the others. Herein, we proposed to prepare pyridinic N doped at carbon aerogels (CaA) derived from biomass, i.e., coir fiber (CF) and palm empty fruit bunches (PEFBs), by adjusting the pyrolysis temperature during carbonization of the biomass-based-cellulose aerogels. The cellulose aerogels were prepared by the ammonia-urea system as the cellulose solvent, in which ammonia also acted as a N source for doping and urea as the cellulose cross-linker. The as-prepared cellulose aerogels were directly pyrolyzed to produce N-doped CaA. It was found that the type of N doping is dominated by pyrrolic N at pyrolysis temperature of 600 °C, pyridinic N at 700 °C, and graphitic N at 800 °C. The pyridinic N exhibited better performance as an electrocatalyst for the ORR than pyrrolic N and graphitic N. The ORR using pyridinic N follows the four-electron pathway, which quantitatively implies a more electrochemically stable process. When used as a cathode for the Mg-air battery using a 3.5% NaCl electrolyte, the pyridinic N CaA exhibited excellent performance by giving a cell voltage of approximately 1.1 V and delivered a high discharge capacity of 411.64 mA h g-1 for CF and 492.64 mA h g-1 for PEFB corresponding to an energy density of 464.23 and 529.49 mW h g-1, respectively.

2.
Insect Sci ; 30(6): 1827-1830, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36992653

ABSTRACT

From a physics perspective, paper wasps arrange larval systems in specific formations to attain mechanical stability for the nest. The closer the distance between the center of mass of the larval system (CML) and the center of mass of the nest (CMN), the lower the moment of force generated by the larval system, resulting in a more stable nest.


Subject(s)
Wasps , Animals , Larva , Nesting Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...