Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Macro Lett ; 10(1): 104-109, 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-35548991

ABSTRACT

Polymer electrolytes with high Li+-ion conductivity provide a route toward improved safety and performance of Li+-ion batteries. However, most polymer electrolytes suffer from low ionic conduction and an even lower Li+-ion contribution to the conductivity (the transport number, t+), with the anion typically transporting over 80% of the charge. Here, we show that subtle and potentially undetected associations within a polymer electrolyte can entrain both the anion and the cation. When removed, the conductivity performance of the electrolyte can be improved by almost 2 orders of magnitude. Importantly, while some of this improvement can be attributed to a decreased glass transition temperature, Tg, the removal of the amide functional group reduces interactions between the polymer and the Li+ cations, doubling the Li+ t+ to 0.43, as measured using pulsed-field-gradient NMR. This work highlights the importance of strategic synthetic design and emphasizes the dual role of Tg and ion binding for the development of polymer electrolytes with increased total ionic conductivity and the Li+ ion contribution to it.

2.
J Am Chem Soc ; 142(15): 7055-7065, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32243146

ABSTRACT

The usual understanding in polymer electrolyte design is that an increase in the polymer dielectric constant results in reduced ion aggregation and therefore increased ionic conductivity. We demonstrate here that in a class of polymers with extensive metal-ligand coordination and tunable dielectric properties, the extent of ionic aggregation is delinked from the ionic conductivity. The polymer systems considered here comprise ether, butadiene, and siloxane backbones with grafted imidazole side-chains, with dissolved Li+, Cu2+, or Zn2+ salts. The nature of ion aggregation is probed using a combination of X-ray scattering, electron paramagnetic resonance (in the case where the metal cation is Cu2+), and polymer field theory-based simulations. Polymers with less polar backbones (butadiene and siloxane) show stronger ion aggregation in X-ray scattering compared to those with the more polar ether backbone. The Tg-normalized ionic conductivities were however unaffected by the extent of aggregation. The results are explained on the basis of simulations which indicate that polymer backbone polarity does impact the microstructure and the extent of ion aggregation but does not impact percolation, leading to similar ionic conductivity regardless of the extent of ion aggregation. The results emphasize the ability to design for low polymer Tg through backbone modulation, separately from controlling ion-polymer interaction dynamics through ligand choice.

3.
Adv Mater ; 31(40): e1902565, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31441153

ABSTRACT

Properties arising from ordered periodic mesostructures are often obscured by small, randomly oriented domains and grain boundaries. Bulk macroscopic single crystals with mesoscale periodicity are needed to establish fundamental structure-property correlations for materials ordered at this length scale (10-100 nm). A solvent-evaporation-induced crystallization method providing access to large (millimeter to centimeter) single-crystal mesostructures, specifically bicontinuous gyroids, in thick films (>100 µm) derived from block copolymers is reported. After in-depth crystallographic characterization of single-crystal block copolymer-preceramic nanocomposite films, the structures are converted into mesoporous ceramic monoliths, with retention of mesoscale crystallinity. When fractured, these monoliths display single-crystal-like cleavage along mesoscale facets. The method can prepare macroscopic bulk single crystals with other block copolymer systems, suggesting that the method is broadly applicable to block copolymer materials assembled by solvent evaporation. It is expected that such bulk single crystals will enable fundamental understanding and control of emergent mesostructure-based properties in block-copolymer-directed metal, semiconductor, and superconductor materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...