Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Med Genet ; 60(2): 163-173, 2023 02.
Article in English | MEDLINE | ID: mdl-35256403

ABSTRACT

BACKGROUND: Postzygotic activating PIK3CA variants cause several phenotypes within the PIK3CA-related overgrowth spectrum (PROS). Variant strength, mosaicism level, specific tissue involvement and overlapping disorders are responsible for disease heterogeneity. We explored these factors in 150 novel patients and in an expanded cohort of 1007 PIK3CA-mutated patients, analysing our new data with previous literature to give a comprehensive picture. METHODS: We performed ultradeep targeted next-generation sequencing (NGS) on DNA from skin biopsy, buccal swab or blood using a panel including phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin pathway genes and GNAQ, GNA11, RASA1 and TEK. Additionally, 914 patients previously reported were systematically reviewed. RESULTS: 93 of our 150 patients had PIK3CA pathogenetic variants. The merged PROS cohort showed that PIK3CA variants span thorough all gene domains, some were exclusively associated with specific PROS phenotypes: weakly activating variants were associated with central nervous system (CNS) involvement, and strongly activating variants with extra-CNS phenotypes. Among the 57 with a wild-type PIK3CA allele, 11 patients with overgrowth and vascular malformations overlapping PROS had variants in GNAQ, GNA11, RASA1 or TEK. CONCLUSION: We confirm that (1) molecular diagnostic yield increases when multiple tissues are tested and by enriching NGS panels with genes of overlapping 'vascular' phenotypes; (2) strongly activating PIK3CA variants are found in affected tissue, rarely in blood: conversely, weakly activating mutations more common in blood; (3) weakly activating variants correlate with CNS involvement, strong variants are more common in cases without; (4) patients with vascular malformations overlapping those of PROS can harbour variants in genes other than PIK3CA.


Subject(s)
Vascular Malformations , Humans , Mutation/genetics , Phenotype , Genotype , Class I Phosphatidylinositol 3-Kinases/genetics , Vascular Malformations/diagnosis , Vascular Malformations/genetics , p120 GTPase Activating Protein/genetics
2.
Int J Mol Sci ; 22(15)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34360843

ABSTRACT

Wolfram syndrome is a rare autosomal recessive disorder characterized by optic atrophy and diabetes mellitus. Wolfram syndrome type 1 (WFS1) is caused by bi-allelic pathogenic variations in the wolframin gene. We described the first case of WFS1 due to a maternal inherited mutation with uniparental mero-isodisomy of chromosome 4. Diabetes mellitus was diagnosed at 11 years of age, with negative anti-beta cells antibodies. Blood glucose control was optimal with low insulin requirement. No pathogenic variations in the most frequent gene causative of maturity-onset diabetes of the young subtypes were detected. At 17.8 years old, a rapid reduction in visual acuity occurred. Genetic testing revealed the novel homozygous variant c.1369A>G; p.Arg457Gly in the exon 8 of wolframin gene. It was detected in a heterozygous state only in the mother while the father showed a wild type sequence. In silico disease causing predictions performed by Polyphen2 classified it as "likely damaging", while Mutation Tester and Sift suggested it was "polymorphism" and "tolerated", respectively. High resolution SNP-array analysis was suggestive of segmental uniparental disomy on chromosome 4. In conclusion, to the best of our knowledge, we describe the first patient with partial uniparental mero-isodisomy of chromosome 4 carrying a novel mutation in the wolframin gene. The clinical phenotype observed in the patient and the analysis performed suggest that the genetic variant detected is pathogenetic.


Subject(s)
Chromosomes, Human, Pair 4 , Membrane Proteins/genetics , Mutation, Missense , Uniparental Disomy , Wolfram Syndrome/genetics , Female , Humans , Young Adult
3.
Cell Death Dis ; 12(4): 316, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33767160

ABSTRACT

The prognosis of locally advanced colorectal cancer (CRC) is currently unsatisfactory. This is mainly due to drug resistance, recurrence, and subsequent metastatic dissemination, which are sustained by the cancer stem cell (CSC) population. The main driver of the CSC gene expression program is Wnt signaling, and previous reports indicate that Wnt3a can activate p38 MAPK. Besides, p38 was shown to feed into the canonical Wnt/ß-catenin pathway. Here we show that patient-derived locally advanced CRC stem cells (CRC-SCs) are characterized by increased expression of p38α and are "addicted" to its kinase activity. Of note, we found that stage III CRC patients with high p38α levels display reduced disease-free and progression-free survival. Extensive molecular analysis in patient-derived CRC-SC tumorspheres and APCMin/+ mice intestinal organoids revealed that p38α acts as a ß-catenin chromatin-associated kinase required for the regulation of a signaling platform involved in tumor proliferation, metastatic dissemination, and chemoresistance in these CRC model systems. In particular, the p38α kinase inhibitor ralimetinib, which has already entered clinical trials, promoted sensitization of patient-derived CRC-SCs to chemotherapeutic agents commonly used for CRC treatment and showed a synthetic lethality effect when used in combination with the MEK1 inhibitor trametinib. Taken together, these results suggest that p38α may be targeted in CSCs to devise new personalized CRC treatment strategies.


Subject(s)
Chromatin/metabolism , Colorectal Neoplasms/drug therapy , Mitogen-Activated Protein Kinase 14/metabolism , Neoplastic Stem Cells/metabolism , Organoids/metabolism , Protein Processing, Post-Translational/genetics , beta Catenin/metabolism , Colorectal Neoplasms/genetics , Humans , Prognosis
4.
Eur J Med Genet ; 60(7): 380-384, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28434922

ABSTRACT

Juvenile Polyposis (JP) is a rare hereditary condition characterized by diffuse hamartomatous gastrointestinal polyposis, associated with a significantly increased risk of neoplastic transformation. Most of the cases are caused by SMAD and BMPR1A mutations, while 10q23 microdeletions, encompassing both PTEN and BMPR1A oncogenes, are extremely rare, typically associated with more aggressive JP, and extraintestinal features overlapping with PTEN Hamartoma Tumor Syndrome. We present the first case of a young female with multiple autoimmune disorders (i.e. thyroiditis and celiac disease), associated with JP, cardiac defects and epilepsy, who carries a de novo heterozygous 10q23.1q23.31 deletion. The dysregulation of the PI3K/Akt pathway is advanced as the putative mechanism connecting autoimmune, malformative and neoplastic disorders. A literature review of clinical manifestation, gene alterations and the treatment of patients with 10q23 deletion is also provided, highlighting the importance of comprehensive, long-term, multi-disciplinary management, aimed at early identification and treatment of both intestinal and extraintestinal disorders.


Subject(s)
Celiac Disease/genetics , Chromosome Deletion , Chromosomes, Human, Pair 10/genetics , Intestinal Polyposis/congenital , Neoplastic Syndromes, Hereditary/genetics , Thyroiditis, Autoimmune/genetics , Celiac Disease/diagnosis , Child , Female , Humans , Intestinal Polyposis/diagnosis , Intestinal Polyposis/genetics , Neoplastic Syndromes, Hereditary/diagnosis , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Thyroiditis, Autoimmune/diagnosis
6.
Dig Liver Dis ; 45(7): 606-11, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23415580

ABSTRACT

BACKGROUND: Germline mutations in the STK11/LKB1 gene cause Peutz-Jeghers syndrome, an autosomal-dominantly inherited condition characterized by mucocutaneous pigmentation, hamartomatous gastrointestinal polyposis, and an increased risk for various malignancies. We here report the results of the first Italian collaborative study on Peutz-Jeghers syndrome. AIMS: To assess cancer risks in a large homogenous cohort of patients with Peutz-Jeghers syndrome, carrying, in large majority, an identified STK11/LKB1 mutation. METHODS: One-hundred and nineteen patients with Peutz-Jeghers syndrome, ascertained in sixteen different Italian centres, were enrolled in a retrospective cohort study. Relative and cumulative cancer risks and genotype-phenotype correlations were evaluated. RESULTS: 36 malignant tumours were found in 31/119 (29 STK11/LKB1 mutation carriers) patients. The mean age at first cancer diagnosis was 41 years. The relative overall cancer risk was 15.1 with a significantly higher risk (p < 0.001) in females (22.0) than in males (8.6). Highly increased relative risks were present for gastrointestinal (126.2) and gynaecological cancers (27.7), in particular for pancreatic (139.7) and cervical cancer (55.6). The Kaplan-Meier estimates for overall cumulative cancer risks were 20%, 43%, 71%, and 89%, at age 40, 50, 60 and 65 years, respectively. CONCLUSION: Peutz-Jeghers syndrome entails markedly elevated cancer risks, mainly for pancreatic and cervical cancers. This study provides a helpful reference for improving current surveillance protocols.


Subject(s)
Germ-Line Mutation/genetics , Pancreatic Neoplasms/genetics , Peutz-Jeghers Syndrome/genetics , Protein Serine-Threonine Kinases/genetics , Uterine Cervical Neoplasms/genetics , AMP-Activated Protein Kinase Kinases , Adolescent , Adult , Aged , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Child , Child, Preschool , Cohort Studies , Female , Gastrointestinal Neoplasms/epidemiology , Gastrointestinal Neoplasms/genetics , Genetic Predisposition to Disease , Genital Neoplasms, Female/epidemiology , Genital Neoplasms, Female/genetics , Humans , Italy , Kaplan-Meier Estimate , Male , Middle Aged , Neoplasms , Pancreatic Neoplasms/epidemiology , Peutz-Jeghers Syndrome/epidemiology , Phenotype , Retrospective Studies , Risk Factors , Sex Distribution , Uterine Cervical Neoplasms/epidemiology , Young Adult
7.
Hum Genet ; 128(4): 373-82, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20623358

ABSTRACT

The Peutz-Jeghers Syndrome (PJS) is an autosomal dominant polyposis disorder with increased risk of multiple cancers. STK11/LKB1 (hereafter named STK11) germline mutations account for the large majority of PJS cases whereas large deletions account for about 30% of the cases. We report here the first thorough molecular characterization of 15 large deletions identified in a cohort of 51 clinically well-characterized PJS patients. The deletions were identified by MLPA analysis and characterized by custom CGH-array and quantitative PCR to define their boundaries. The deletions, ranging from 2.9 to 180 kb, removed one or more loci contiguous to the STK11 gene in six patients, while partial STK11 gene deletions were present in the remaining nine cases. By means of DNA sequencing, we were able to precisely characterize the breakpoints in each case. Of the 30 breakpoints, 16 were located in Alu elements, revealing non-allelic homologous recombination (NAHR) as the putative mechanism for the deletions of the STK11 gene, which lays in a region with high Alu density. In the remaining cases, other mechanisms could be hypothesized, such as microhomology-mediated end-joining (MMEJ) or non-homologous end-joining (NHEJ). In conclusion we here demonstrated the non-random occurrence of large deletions associated with PJS. All our patients had a classical PJS phenotype, which shows that haploinsufficiency for SBNO2, C19orf26, ATP5D, MIDN, C19orf23, CIRBP, C19orf24,and EFNA2, does not apparently affect their clinical phenotype.


Subject(s)
Chromosome Deletion , Gene Deletion , Peutz-Jeghers Syndrome/genetics , Protein Serine-Threonine Kinases/genetics , AMP-Activated Protein Kinase Kinases , Adolescent , Adult , Alu Elements/genetics , Child , Child, Preschool , Chromosome Breakage , Chromosomes, Human, Pair 19/genetics , DNA Mutational Analysis , Female , Germ-Line Mutation , Humans , Infant , Male , Middle Aged , Nucleic Acid Amplification Techniques/methods , Peutz-Jeghers Syndrome/pathology , Polymerase Chain Reaction , Young Adult
8.
J Cell Physiol ; 209(1): 67-73, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16775838

ABSTRACT

Roberts syndrome (RS) is a rare disorder characterized by tetraphocomelia and several other clinical features. Cells from RS patients exhibit characteristic premature separation of heterochromatic region of many chromosomes and abnormalities in cell cycle. Mutations in the ESCO2 gene have recently been identified in 20 RS families. We performed mutational analysis of the ESCO2 gene in two fetuses diagnosed with RS and their normal parents. In both fetuses, we identified homozygosity for the c. 745_746delGT mutation, while the non-consanguineous parents were both heterozygous for the same mutation. Considering the position of the mutation identified, we carried out qualitative and quantitative real-time ESCO2 cDNA analysis on RNA isolated from CVS-stromal cells in one fetus, amniocytes in the second fetus, and lymphocytes from the heterozygous parents. The results of this analysis showed that despite the presence of a premature termination codon (PTC) 112 nucleotides upstream of the next exon3-exon4 junction, the mutant ESCO2 mRNA was present in both fetuses, albeit at low levels, indicating a partial resistance to nonsense mediated decay (NMD). Interestingly, when cells derived from the two fetuses were treated with an inhibitor of translation, they revealed the presence of tissue and individual variability in NMD efficiency, despite the identical mutational status. The existence of such a variation in the NMD efficiency could explain the broad intrafamilial and interfamilial variability in the clinical presentation of RS patients, and in other genetic diseases where nonsense mutations are responsible for most of the mutation load. Moreover, considering that a mutated full length mRNA was produced in both fetuses, we used Western blot analysis to demonstrate the absence of the ESCO2-truncated protein in cells derived from both fetuses and in a lymphoblastoid cell line derived from the parents.


Subject(s)
Acetyltransferases/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA/analysis , Fetus/abnormalities , Frameshift Mutation , Genetic Diseases, Inborn/genetics , RNA Stability , Abnormalities, Multiple/genetics , Base Sequence , Codon, Nonsense/analysis , DNA Repair , Female , Genetic Variation , Homozygote , Humans , Male , Molecular Sequence Data , Pregnancy , Prenatal Diagnosis , Sequence Homology, Nucleic Acid , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...