Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Appl Microbiol Biotechnol ; 107(22): 6799-6809, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37725141

ABSTRACT

To realize biomass refinery without complex downstream processes, we extensively screened for microbial strains that efficiently produce extracellular oil from sugars. Rhodotorula paludigena (formerly Rhodosporidium paludigenum) BS15 was found to efficiently produce polyol esters of fatty acids (PEFAs), which mainly comprised of 3-acetoxypalmitic acid and partially acetylated mannitol/arabinitol. To evaluate the performance of this strain, fed-batch fermentation was demonstrated on a flask scale, and 110 g/L PEFA and 103 g/L dry cells were produced in 12 days. To the best of our knowledge, the strain BS15 exhibited the highest PEFA titer (g/L) ever to be reported so far. Because the PEFA precipitated at the bottom of the culture broth, it could be easily recovered by simply discarding the upper phase. Various carbon sources can be utilized for cell growth and/or PEFA production, which signifies the potential for converting diverse biomass sources. Two different types of next-generation sequencers, Illumina HiSeq and Oxford Nanopore PromethION, were used to analyze the whole-genome sequence of the strain BS15. The integrative data analysis generated a high-quality and reliable reference genome for PEFA-producing R. paludigena. The 22.5-M base genome sequence and the estimated genes were registered in Genbank (accession numbers BQKY01000001-BQKY01000019). KEY POINTS: • R. paludigena BS15 was isolated after an extensive screening of extracellular oil producers from natural sources. • Fed-batch fermentation of R. paludigena BS15 yielded 110 g/L of PEFA, which is the highest titer ever reported to date. • Combined analysis using Illumina and Oxford Nanopore sequencers produced the near-complete genome sequence.

3.
Mycology ; 13(2): 133-142, 2022.
Article in English | MEDLINE | ID: mdl-35711329

ABSTRACT

The entomopathogenic fungus Akanthomyces muscarius strain IMI 268317, previously known as Lecanicilliummuscariumand Verticillium lecanii, is currently used as a microbial insecticide to protect tomatoes from serious leaf-inhabiting pests in greenhouses. However, its persistence on tomato leaves has been unidentified. Understanding the events and processes of phyllosphere colonisation by this strain should help in developing its practical applications. This study assessed the epiphytic abilities of this strain on tomato leaves in humid conditions, simulating closed greenhouse environments. Conidia applied on tomato leaflets strongly adhered 12 h after inoculation. The mucilage-like materials were found around the germinated conidia after 3 days after inoculation (dpi), which possibly strengthened the adhesion. A total of 15% of conidia germinated at 3 dpi, of which 2% formed typical conidium or an enlarged structure on germ-tube tips. Many conidia were produced on phialide tips that branched from elongated hyphae at 7 dpi; however, invasion into leaf tissue was not observed. On the leaflets, inoculated conidia suspensions of 1 × 105 and 1 × 106 conidia/mL, colony forming units increased 52.6 and 8.8 folds from 0 to 14 dpi, respectively. These results suggested that A. muscarius strain IMI 268317 has high epiphytic abilities on tomato leaflets in a humid condition.

4.
Microbiol Resour Announc ; 11(4): e0014322, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35377186

ABSTRACT

We report the complete genome sequence of Lactococcus cremoris strain 7-1, which was isolated from urum, a traditional Mongolian milk product. Strain 7-1 adhered to porcine gastric mucin in a carbon source-dependent manner. The genome consists of a circular chromosome (2,557,589 bp; GC content, 35.7%) and two circular plasmids.

5.
Front Microbiol ; 13: 826677, 2022.
Article in English | MEDLINE | ID: mdl-35154061

ABSTRACT

Fusarium oxysporum is a soil-borne fungal pathogen that causes vascular wilts in a wide variety of crops. Certain nonpathogenic strains of F. oxysporum are known to protect crops against F. oxysporum pathogens. We assessed the biocontrol activities of nonpathogenic mutants of F. oxysporum ff. spp. melonis and lycopersici generated by disruption of the FOW2 gene, which encodes a Zn(II)2Cys6-type transcriptional regulator essential for their pathogenicity. Pre-inoculation of melon or tomato roots with strain ΔFOW2 conidia markedly reduced disease incidence caused by the parental wild-type strain in a concentration-dependent manner of conidial suspensions of ΔFOW2 strains. The biocontrol effect caused by the ΔFOW2 pre-inoculation lasted for at least 7 days. Pre-inoculation of melon roots with the wild-type or ΔFOW2 strain of F. oxysporum f. sp. lycopersici and nonpathogenic F. oxysporum strain also led to biocontrol activity against F. oxysporum f. sp. melonis, indicating that the biocontrol activity of ΔFOW2 strains is due to its nonpathogenic nature, not to the FOW2 disfunction. Conidial germination and hyphal elongation of only the wild-type strain were inhibited on melon root surface pre-inoculated with conidia of strains nonpathogenic to melon plants. Expression of defense-related genes was not significantly induced in roots and aboveground parts of melon seedlings preinoculated with ΔFOW2 conidia. Carbon source competition assay showed that nonpathogenic strains competed with the wild-type strain for a carbon source in soil. Strain ΔFOW2 also competed with the oomycete pathogen Pythium aphanidermatum for carbon source and protected melon plants from P. aphanidermatum. Our results suggest that the biocontrol activity of the nonpathogenic F. oxysporum strains used in this study mainly depends on their extensive colonization of the root surface and outcompeting pathogens for nutrients.

6.
J Biosci Bioeng ; 130(6): 596-603, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32855046

ABSTRACT

EnkT is an ATP-binding cassette (ABC) transporter produced by Enterococcus faecium NKR-5-3, which is responsible for the secretion of multiple bacteriocins; enterocins NKR-5-3A, C, D, and Z (Ent53A, C, D, and Z). EnkT has been shown to possess a tolerant recognition mechanism that enables it to secrete the mature Ent53C from a chimeric precursor peptide containing the leader peptide moieties that are derived from different heterologous bacteriocins. In this study, to further characterize EnkT, we aimed to investigate the capacity of EnkT to recognize, process, and secrete non-cognate bacteriocins, which belong to different subclasses of class II. For this, the non-cognate bacteriocin precursor peptides, including enterocin A, pediocin PA-1, lactococcin Q, lactococcin A, and lacticin Q were co-expressed with EnkT, and thereafter, the production of the mature forms of these non-cognate bacteriocins was assessed. Our results revealed that EnkT could potentially recognize, process, and secrete the non-cognate bacteriocins with an exception of the leaderless bacteriocin, lacticin Q. Moreover, the processing and secretion efficiencies of these heterologous non-cognate bacteriocins by EnkT were further enhanced when the leader peptide moiety was replaced with the Ent53C leader peptide (derived from a native NKR-5-3 bacteriocin). The findings of this study describe the wide substrate tolerance of this ABC transporter, EnkT, that can be exploited in the future in establishing effective bacteriocin production systems adaptive to complex fermentation conditions common in many food systems.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Bacteriocins/metabolism , Enterococcus faecium/metabolism , Biological Transport , Fermentation , Protein Sorting Signals
7.
Mycology ; 12(1): 39-47, 2020 Jan 05.
Article in English | MEDLINE | ID: mdl-33628607

ABSTRACT

Beauveria bassiana, known for its entomopathogenic characteristics, is the most widely used biocontrol agent against many insect pests and may also be active against soil-borne pathogens. It inhabits the surfaces or inner tissues of various plant species without causing any visible signs or symptoms. Here we show that B. bassiana strain GHA, the active ingredient of a commercial microbial insecticide, colonises tomato plants. GHA grew on intact leaf surfaces of tomato in high humidity, but never entered stomata. Viable hyphae and conidia were detected, and the population on inoculated leaves significantly increased until 14 days after inoculation. On tomato leaves, GHA conidiated normally via conidiophores and phialides, and also via microcycle conidiation (conidiophores and phialides form directly from germ tubes and produce conidia). Hyphae were also detected inside the rachis, even more frequently after plant surfaces were scarified. These results suggested that B. bassiana strain GHA can grow epiphytically and endophytically on tomato plants.

8.
Microbiol Resour Announc ; 8(35)2019 Aug 29.
Article in English | MEDLINE | ID: mdl-31467096

ABSTRACT

Dicyma pulvinata strain 414-3, isolated from the surface of a tomato leaf, is a mycoparasitic fungus of Cladosporium fulvum, which causes leaf mold of tomato. We report here the draft genome sequence of strain 414-3, which will contribute to elucidating the molecular mechanisms involved in the mycoparasitism.

9.
J Biosci Bioeng ; 126(1): 23-29, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29452934

ABSTRACT

EnkT is a novel ATP-binding cassette (ABC) transporter responsible for secretion of four bacteriocins, enterocins NKR-5-3A, C, D, and Z (Ent53A, C, D, and Z), produced by Enterococcus faecium NKR-5-3. It is generally recognized that the secretion of a bacteriocin requires a dedicated ABC transporter, although molecular mechanisms of this secretion are yet to be revealed. In order to characterize the unique ability of EnkT to secrete multiple bacteriocins, the role of N-terminal leader peptides of bacteriocin precursors was evaluated using Ent53C precursor as a model. The 18-amino acid leader peptide of Ent53C (Lc) was modified by site-directed mutagenesis to generate various point mutations, truncations, or extensions, and substitutions with other leader peptides. The impact of these Lc mutations on Ent53C secretion was evaluated using a quantitative antimicrobial activity assay. We observed that Ent53C production increased with Ala substitution of the highly conserved C-terminal double glycine residues that are recognized as the cleavage site. In contrast, Ent53C antimicrobial activity decreased, with decrease in the length of the putative α-helix-forming region of Lc. Furthermore, EnkT recognized and transported Ent53C of the transformants possessing heterologous leader peptides of enterocin A, pediocin PA-1, brochocins A and B, and lactococcins Qα and Qß. These results indicated that EnkT shows significant tolerance towards the sequence and length of leader peptides, to secrete multiple bacteriocins. This further demonstrates the functional diversity of bacteriocin ABC transporters and the importance of leader peptides as their recognition motif.


Subject(s)
ATP-Binding Cassette Transporters , Bacteriocins/metabolism , Protein Sorting Signals/physiology , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Amino Acid Sequence , Biological Transport/genetics , Enterococcus faecium/genetics , Enterococcus faecium/metabolism , Mutagenesis, Site-Directed , Point Mutation/physiology , Protein Precursors/chemistry , Protein Precursors/genetics , Protein Precursors/metabolism , Protein Sorting Signals/genetics , Secretory Pathway/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...