Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Environ Int ; 115: 230-238, 2018 06.
Article in English | MEDLINE | ID: mdl-29605675

ABSTRACT

Multiple changes are influencing work, workplaces and workers in the US including shifts in the main types of work and the rise of the 'gig' economy. Work and workplace changes have coincided with a decline in unions and associated advocacy for improved safety and health conditions. Risk assessment has been the primary method to inform occupational and environmental health policy and management for many types of hazards. Although often focused on one hazard at a time, risk assessment frameworks and methods have advanced toward cumulative risk assessment recognizing that exposure to a single chemical or non-chemical stressor rarely occurs in isolation. We explore how applying cumulative risk approaches may change the roles of workers and employers as they pursue improved health and safety and elucidate some of the challenges and opportunities that might arise. Application of cumulative risk assessment should result in better understanding of complex exposures and health risks with the potential to inform more effective controls and improved safety and health risk management overall. Roles and responsibilities of both employers and workers are anticipated to change with potential for a greater burden of responsibility on workers to address risk factors both inside and outside the workplace that affect health at work. A range of policies, guidance and training have helped develop cumulative risk assessment for the environmental health field and similar approaches are available to foster the practice in occupational safety and health.


Subject(s)
Occupational Health , Risk Assessment , Workplace , Humans
2.
Int J Occup Environ Health ; 22(2): 142-50, 2016 04.
Article in English | MEDLINE | ID: mdl-27362634

ABSTRACT

BACKGROUND: Silica is a pervasive and potentially deadly occupational hazard in construction. The occupational risk posed by silica has long been known, but efforts to use engineering controls to minimize dust generation in tuckpointing operations, a masonry restoration specialty, have been slow. OBJECTIVES: The objective of this study is to explore how local innovation in occupational safety and health may emerge, absent the establishment of national standards. METHOD: This study uses a case study to explore the adoption of local exhaust ventilation in tuckpointing operations in the Chicago area. Sources of data for this research include interviews with a diverse range of key informants and the review of archival material. RESULTS: This case study found local unions, municipal regulators, contractors, and major public users of construction services played a central role in the events and milestones that led to the early adoption of local exhaust ventilation in Chicago. The adoption of local exhaust ventilation technology in Chicago demonstrates the potential for local actors to fill an important void when rulemaking in vital areas of occupational of health impedes effective national regulation.


Subject(s)
Construction Industry , Inhalation Exposure/prevention & control , Occupational Exposure/prevention & control , Ventilation/methods , Air Pollutants, Occupational , Chicago , Dust , Humans , Labor Unions , Local Government , Occupational Health , Silicon Dioxide
3.
Ann Occup Hyg ; 60(3): 334-47, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26608952

ABSTRACT

High and low flow rate respirable size selective samplers including the CIP10-R (10 l min(-1)), FSP10 (11.2 l min(-1)), GK2.69 (4.4 l min(-1)), 10-mm nylon (1.7 l min(-1)), and Higgins-Dewell type (2.2 l min(-1)) were compared via side-by-side sampling in workplaces for respirable crystalline silica measurement. Sampling was conducted at eight different occupational sites in the USA and five different stonemasonry sites in Ireland. A total of 536 (268 pairs) personal samples and 55 area samples were collected. Gravimetric analysis was used to determine respirable dust mass and X-ray diffraction analysis was used to determine quartz mass. Ratios of respirable dust mass concentration, quartz mass concentration, respirable dust mass, and quartz mass from high and low flow rate samplers were compared. In general, samplers did not show significant differences greater than 30% in respirable dust mass concentration and quartz mass concentration when outliers (ratio <0.3 or >3.0) were removed from the analysis. The frequency of samples above the limit of detection and limit of quantification of quartz was significantly higher for the CIP10-R and FSP10 samplers compared to low flow rate samplers, while the GK2.69 cyclone did not show significant difference from low flow rate samplers. High flow rate samplers collected significantly more respirable dust and quartz than low flow rate samplers as expected indicating that utilizing high flow rate samplers might improve precision in quartz measurement. Although the samplers did not show significant differences in respirable dust and quartz concentrations, other practical attributes might make them more or less suitable for personal sampling.


Subject(s)
Environmental Monitoring/instrumentation , Inhalation Exposure/analysis , Occupational Exposure/analysis , Quartz/analysis , Air Pollutants, Occupational/analysis , Dust/analysis , Environmental Monitoring/statistics & numerical data , Filtration , Humans , Ireland , Particle Size , United States , Workplace
4.
Ann Occup Hyg ; 56(7): 764-76, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22459321

ABSTRACT

Arc welding is a common unit operation in the construction industry, where frequent changes in location and welding position make it more difficult to control fume exposures than in industries where fixed locations are the norm. Welders may be exposed to a variety of toxic airborne contaminants including manganese (Mn) and hexavalent chromium (CrVI). Local exhaust ventilation (LEV) is a well-known engineering control for welding fumes but has not been adopted widely in the construction industry. This literature review presents data on the performance of a variety of LEV systems for welding fume control from the construction (five references), shipyard (five references), and other industries. The studies indicate that LEV can reduce fume exposures to total particulate, Mn, and CrVI to levels below currently relevant standards. Field studies suggest that 40-50% or more reduction in exposure is possible with portable or fixed LEV systems relative to natural ventilation but that correct positioning of the hood and adequate exhaust flow rates are essential. Successful implementation of extraction guns for gas metal arc welding (GMAW) and flux core arc welding has been demonstrated, indicating that a successful balance between extraction airflow and shielding gas requirements is possible. Work practices are an important part of achieving successful control of fume exposures; in particular, positioning the hood close to the arc, checking exhaust flow rates, and avoiding the plume. Further research is needed on hood size effects for controlling welding fume with portable LEV systems and identifying and overcoming barriers to LEV use in construction.


Subject(s)
Air Pollution, Indoor/prevention & control , Occupational Exposure/prevention & control , Smoke/prevention & control , Ventilation/methods , Welding , Air Pollutants, Occupational/analysis , Humans
6.
J Occup Environ Hyg ; 7(12): 700-11, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21058155

ABSTRACT

Concrete grinding exposes workers to unacceptable levels of crystalline silica dust, known to cause diseases such as silicosis and possibly lung cancer. This study examined the influence of major factors of exposure and effectiveness of existing dust control methods by simulating field concrete grinding in an enclosed workplace laboratory. Air was monitored during 201 concrete grinding sessions while using a variety of grinders, accessories, and existing dust control methods, including general ventilation (GV), local exhaust ventilation (LEV), and wet grinding. Task-specific geometric mean (GM) of respirable crystalline silica dust concentrations (mg/m³ for LEV:HEPA-, LEV:Shop-vac-, wet-, and uncontrolled-grinding, while GV was off/on, were 0.17/0.09, 0.57/0.13, 1.11/0.44, and 23.1/6.80, respectively. Silica dust concentrations (mg/m³ using 100-125 mm (4-5 inch) and 180 mm (7 inch) grinding cups were 0.53/0.22 and 2.43/0.56, respectively. GM concentrations of silica dust were significantly lower for (1) GV on (66.0%) vs. off, and (2) LEV:HEPA- (99.0%), LEV:Shop-vac- (98.1%) or wet- (94.4%) vs. uncontrolled-grinding. Task-specific GM of respirable suspended particulate matter (RSP) concentrations (mg/m³ for LEV:HEPA-, LEV:Shop-vac-, wet-, and uncontrolled grinding, while GV was off/on, were 1.58/0.63, 7.20/1.15, 9.52/4.13, and 152/47.8, respectively. GM concentrations of RSP using 100-125 mm and 180 mm grinding cups were 4.78/1.62 and 22.2/5.06, respectively. GM concentrations of RSP were significantly lower for (1) GV on (70.2%) vs. off, and (2) LEV:HEPA- (98.9%), LEV:Shop-vac- (96.9%) or wet- (92.6%) vs. uncontrolled grinding. Silica dust and RSP were not significantly affected by (1) orientation of grinding surfaces (vertical vs. inclined); (2) water flow rates for wet grinding; (3) length of task-specific sampling time; or, (4) among cup sizes of 100, 115 or 125 mm. No combination of factors or control methods reduced an 8-hr exposure level to below the recommended criterion of 0.025 mg/m³ for crystalline silica, requiring further refinement in engineering controls, administrative controls, or the use of respirators.


Subject(s)
Air Pollutants, Occupational/analysis , Dust/analysis , Dust/prevention & control , Occupational Exposure/analysis , Occupational Exposure/prevention & control , Quartz/analysis , Air Pollution/prevention & control , Analysis of Variance , Construction Materials , Environmental Monitoring , Humans , Inhalation Exposure/prevention & control , Particulate Matter/analysis , Vacuum , Ventilation , Water
7.
J Occup Environ Hyg ; 7(11): 607-15, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20845207

ABSTRACT

Studies of exposure to the lung carcinogen hexavalent chromium (CrVI) from welding tasks are limited, especially within the construction industry where overexposure may be common. In addition, despite the OSHA requirement that the use of engineering controls such as local exhaust ventilation (LEV) first be considered before relying on other strategies to reduce worker exposure to CrVI, data on the effectiveness of LEV to reduce CrVI exposures from welding are lacking. The goal of the present study was to characterize breathing zone air concentrations of CrVI during welding tasks and primary contributing factors in four datasets: (1) OSHA compliance data; (2) a publicly available database from The Welding Institute (TWI); (3) field survey data of construction welders collected by the Center for Construction Research and Training (CPWR); and (4) controlled welding trials conducted by CPWR to assess the effectiveness of a portable LEV unit to reduce CrVI exposure. In the OSHA (n = 181) and TWI (n = 124) datasets, which included very few samples from the construction industry, the OSHA permissible exposure level (PEL) for CrVI (5 µg/m(3)) was exceeded in 9% and 13% of samples, respectively. CrVI concentrations measured in the CPWR field surveys (n = 43) were considerably higher, and 25% of samples exceeded the PEL. In the TWI and CPWR datasets, base metal, welding process, and LEV use were important predictors of CrVI concentrations. Only weak-to-moderate correlations were found between total particulate matter and CrVI, suggesting that total particulate matter concentrations are not a good surrogate for CrVI exposure in retrospective studies. Finally, in the controlled welding trials, LEV reduced median CrVI concentrations by 68% (p = 0.02). In conclusion, overexposure to CrVI in stainless steel welding is likely widespread, especially in certain operations such as shielded metal arc welding, which is commonly used in construction. However, exposure could be substantially reduced with proper use of LEV.


Subject(s)
Air Pollutants, Occupational , Chromium , Occupational Exposure/prevention & control , Occupational Exposure/statistics & numerical data , Welding/statistics & numerical data , Construction Materials , Databases, Factual , Humans , Occupational Exposure/standards , Particulate Matter , Stainless Steel , Welding/methods
8.
J Occup Environ Hyg ; 7(2): 115-26, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20013450

ABSTRACT

Welders are exposed to a variety of metal fumes, including manganese, that may elevate the risk for neurological disease. This study examines several large data sets to characterize manganese, iron, and total particulate mass exposures resulting from welding operations. The data sets contained covariates for a variety of exposure modifiers, including the presence of ventilation, the degree of confinement, and the location of the personal sampler (i.e., behind or in front of the welding helmet). The analysis suggests that exposures to manganese are frequently at or above the current ACGIH(R) threshold limit value of 0.2 mg/m(3). In addition, there is evidence that local exhaust ventilation can control the exposures to manganese and total fume but that mechanical ventilation may not. The data suggest that higher exposures are associated with a greater degree of enclosure, particularly when local exhaust ventilation is absent. Samples taken behind the helmet were, in general, lower than those measured outside of it. There were strong correlations among manganese, iron, and total particulate mass exposures, suggesting simple equations to estimate one fume component from any of the others.


Subject(s)
Air Pollutants, Occupational/analysis , Iron/analysis , Manganese/analysis , Occupational Exposure/analysis , Particulate Matter/analysis , Welding , Environmental Monitoring , Humans , Risk Assessment , Ventilation
9.
Public Health Rep ; 124 Suppl 1: 101-11, 2009.
Article in English | MEDLINE | ID: mdl-19618812

ABSTRACT

OBJECTIVES: A number of tasks in construction generate worker overexposures to respirable crystalline silica dust, which is a significant contributor to occupational mortality and morbidity. This study evaluated the performance of commercially available engineering controls used in dusty construction tasks commonly performed by bricklayers. METHODS: Local exhaust ventilation (LEV) controls for a portable abrasive cutter and for tuckpointing grinders were examined at a bricklayers' training center, as were two stationary wet saws. Personal breathing zone air samples were collected with and without the use of LEV or water suppression during simulated concrete block cutting, brick cutting, and tuckpointing. RESULTS: Compared with the use of no exposure control during block and brick cutting, the portable LEV unit significantly reduced mean respirable quartz exposures by 96% for block cutting and 91% for brick cutting (p < 0.01). The use of stationary wet saws was also associated with 91% reductions in exposure (p < 0.01). For tuckpointing, the reductions in mean respirable quartz concentrations were between 91% and 93% with the LEV controls (p < 0.05). CONCLUSIONS: Reductions of up to 96% in mean respirable quartz concentration were observed between control and no-control scenarios. These reductions with commercially available off-the-shelf tools demonstrate the effectiveness of engineering control interventions to reduce crystalline silica exposures in construction. Strategies to further improve control performance and approaches for increasing control interventions in construction are needed.


Subject(s)
Air Pollutants, Occupational/poisoning , Air Pollution/prevention & control , Construction Materials/poisoning , Equipment Safety/methods , Inhalation Exposure/prevention & control , Occupational Exposure/prevention & control , Silicon Dioxide/poisoning , Silicosis/prevention & control , Dust/prevention & control , Engineering/methods , Equipment Design , Humans , Inhalation Exposure/adverse effects , Occupational Exposure/adverse effects , Protective Devices , Silicosis/etiology , Ventilation/methods
10.
Int J Hyg Environ Health ; 212(5): 459-69, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19181573

ABSTRACT

Exposure to manganese dusts and fumes may cause a clinical neurological syndrome called manganism. Welders are frequently exposed to manganese-containing fumes generated by electric arcs and thermal torches. This paper reviews studies on the association between exposure to such welding fumes and neurological disease. Using the IRSST expert panel criteria, 78 cases of probable/possible, and 19 additional cases of possible occupational manganism were identified in the literature among manganese-exposed workers involved in welding processes. Epidemiological evidence linking welding exposures to Parkinson's disease is still controversial. Although more research is needed to clarify the risks of neurological impairment from welding, control measures including ventilation and adequate respiratory protection, should be implemented to minimize welding fume exposures. The significance of fume transport into the central nervous system via the olfactory nerve, which by-passes the blood-brain barrier, also needs to be assessed.


Subject(s)
Environmental Pollutants/toxicity , Manganese/toxicity , Neurotoxicity Syndromes/etiology , Occupational Exposure , Welding , Diagnosis, Differential , Humans , Neurotoxicity Syndromes/diagnosis , Neurotoxicity Syndromes/epidemiology , Parkinson Disease/diagnosis , Parkinson Disease/epidemiology , Parkinson Disease/etiology , Risk Assessment
11.
J Occup Environ Hyg ; 4(12): 943-51, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17963139

ABSTRACT

Overexposure to welding fume constituents, particularly manganese, is of concern in the construction industry due to the prevalence of welding and the scarcity of engineering controls. The control effectiveness of a commercially available portable local exhaust ventilation (LEV) unit was assessed. It consisted of a portable vacuum and a small bell-shaped hood connected by a flexible 2 inch (50.8 mm) diameter hose, in both experimental and field settings. The experimental testing was done in a semienclosed booth at a pipefitter training facility. Five paired trials of LEV control vs. no control, each approximately 1 hr in duration and conducted during two successive welds of 6 inch (152.4 mm) diameter carbon steel pipe were run in random order. Breathing zone samples were collected outside the welding hood during each trial. In the field scenario, full-shift breathing zone samples were collected from two pipefitters welding carbon steel pipe for a chiller installation on a commercial construction project. Eight days of full-shift sampling were conducted on both workers (n = 16), and the LEV was used by one of the two workers on an alternating basis for 7 of the days. All samples were collected with personal sample pumps calibrated at 2 L/min. Filter cassettes were analyzed for total particulate and manganese concentration by a certified laboratory. In the experimental setting, use of the portable LEV resulted in a 75% reduction in manganese exposure (mean 13 microg/m(3) vs. 51 microg/m(3); p < 0.05) and a 60% reduction in total particulate (mean 0.74 mg/m(3) vs. 1.83 mg/m(3); p < 0.05). In the field setting, LEV use resulted in a 53% reduction in manganese exposure (geometric mean 46 microg/m(3) vs. 97 microg/m(3); p < 0.05) but only a 10% reduction in total particulate (geometric mean 4.5 mg/m(3) vs. 5.0 mg/m(3); p > 0.05). These results demonstrate that LEV use can reduce manganese exposure associated with welding tasks in construction.


Subject(s)
Air Pollutants, Occupational/analysis , Environmental Monitoring/instrumentation , Manganese/analysis , Occupational Exposure/analysis , Smoke/analysis , Welding , Aerosols/analysis , Facility Design and Construction , Humans , Occupational Exposure/prevention & control , Occupational Exposure/standards , Ventilation
14.
J Occup Environ Hyg ; 1(10): 680-7, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15631059

ABSTRACT

This literature review presents information on measures for controlling worker exposure to toxic airborne contaminants generated during abrasive blasting operations occurring primarily in the construction industry. The exposures of concern include respirable crystalline silica, lead, chromates, and other toxic metals. Unfortunately, silica sand continues to be widely used in the United States as an abrasive blasting medium, resulting in high exposures to operators and surrounding personnel. Recently, several alternative abrasives have emerged as potential substitutes for sand, but they seem to be underused Some of these abrasives may pose additional metal exposure hazards. In addition, several new and improved technologies offer promise for reducing or eliminating exposures; these include wet abrasive blasting, high-pressure water jetting, vacuum blasting, and automated/robotic systems. More research, particularly field studies, is needed to evaluate control interventions in this important and hazardous operation.


Subject(s)
Engineering , Occupational Exposure/prevention & control , Silicon Dioxide/analysis , Construction Materials , Facility Design and Construction , Humans
16.
Appl Occup Environ Hyg ; 18(4): 268-77, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12637237

ABSTRACT

This literature review summarizes engineering control technology research for dust and silica exposures associated with selected tasks in the construction industry. Exposure to crystalline silica can cause silicosis and lung fibrosis, and evidence now links it with lung cancer. Of over 30 references identified and reviewed, 16 were particularly significant in providing data and analyses capable of documenting the efficacy of various engineering controls. These reports include information on generation rates and worker exposures to silica and dust during four different tasks: cutting brick and concrete block, grinding mortar from between bricks, drilling, and grinding concrete surfaces. The major controls are wet methods and local exhaust ventilation. The studies suggest that while the methods provide substantial exposure reductions, they may not reduce levels below the current ACGIH threshold limit value (TLV) of 0.05 mg/m(3) for respirable quartz. Although further research on controls for these operations is indicated, it is clear that effective methods exist for significant exposure reduction.


Subject(s)
Air Pollutants, Occupational/adverse effects , Dust , Industry , Occupational Exposure/analysis , Silicon Dioxide/adverse effects , Construction Materials/adverse effects , Facility Design and Construction , Humans , Lung Neoplasms/chemically induced , Occupational Exposure/adverse effects , Pulmonary Fibrosis/chemically induced , Silicosis/etiology , Workforce
17.
Ann Occup Hyg ; 47(2): 111-22, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12581996

ABSTRACT

Exposures to respirable dust and silica were investigated among 36 construction sites in the USA. Personal measurements (n = 151) were analyzed from 80 workers in four trades, namely bricklayers, painters (while abrasive blasting), operating engineers and laborers. Painters had the highest exposures (median values for respirable dust and silica: 13.5 and 1.28 mg/m(3), respectively), followed by laborers (2.46 and 0.350 mg/m(3)), bricklayers (2.13 and 3.20 mg/m(3)) and operating engineers (0.720 and 0.075 mg/m(3)). Mixed models were fitted to the log-transformed air levels to estimate the means and within- and between-worker variance components of the distributions in each trade. We refer to the likelihood that a typical worker from a given trade would be exposed, on average, above the occupational exposure limit (OEL) as the probability of overexposure. Given US OELs of 0.05 mg/m(3) for respirable silica and 3 mg/m(3) for respirable dust, we estimated probabilities of overexposure as between 64.5 and 100% for silica and between 8.2 and 89.2% for dust; in no instance could it be inferred with certainty that this probability was <10%. This indicates that silica exposures are grossly unacceptable in the US construction industry. While engineering and administrative interventions are needed to reduce overall air levels, the heterogeneous exposures among members of each trade suggest that controls should focus, in part, upon the individual sites, activities and equipment involved. The effects of current controls and workplace characteristics upon silica exposures were investigated among operating engineers and laborers. Silica exposures were significantly reduced by wet dust suppression (approximately 3-fold for laborers) and use of ventilated cabs (approximately 6-fold for operating engineers) and were significantly increased indoors (about 4-fold for laborers). It is concluded that urgent action is required to reduce silica exposures in the US construction industry.


Subject(s)
Algorithms , Dust/analysis , Occupational Exposure/analysis , Occupational Health , Silicon Dioxide/analysis , Construction Materials , Engineering , Humans , Lung Diseases/etiology , Occupational Diseases/etiology , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...