Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anticancer Agents Med Chem ; 21(12): 1564-1574, 2021.
Article in English | MEDLINE | ID: mdl-33106151

ABSTRACT

BACKGROUND: Dysregulation of the cell cycle is one of the main causes of melanomagenesis. Genomewide studies showed that the expression of Aurora -A and -B significantly has been upregulated in melanoma. However, there is no FDA approved drug targeting aurora kinases in the treatment of melanoma. In addition, the development of resistance to chemotherapeutic agents in the treatment of melanoma and, as a result, the relapse due to heterogeneous cell groups in patients is a second phenomenon that causes treatment failure. Therefore, there is an urgent need for therapeutic alternatives targeting both melanoma and Melanoma Cancer Stem Cells (MCSCs) in treatments. At this stage, cell cycle regulators become promising targets. OBJECTIVE: In this study, we aimed to identify the effects of Aurora kinase inhibitor CCT137690 on the cytotoxicity, apoptosis, cell cycle, migration, and colony formation and expression changes of genes related to proliferation, cell death and cell cycle in melanoma and melanoma cancer stem cell. In addition, we investigated the apoptotic and cytostatic effects of CCT137690 in normal fibroblast cells. METHODS: We evaluated the cytotoxic effect of CCT137690 in MCSCs, NM2C5 referring as melanoma model cells and WI-38 cells by using the WST-1 test. The effect of CCT137690 on apoptosis was detected via Annexin V and JC-1 method; on cell cycle progression by cell cycle test; on gene expression by using RT-PCR, on migration activity by wound healing assay and clonal growth by clonogenic assay in NM2C5 cells and MCSCs. The effects of CCT137690 in WI-38, referring as healthy fibroblast cell, were assessed through Annexin V and cell cycle method. RESULTS: CCT137690 was determined to have a cytotoxic and apoptotic effect in MCSCs and melanoma. It caused polyploidy and cell cycle arrest at the G2/M phase in MCSCs and melanoma cells. The significant decrease in the expression of MMP2, MMP7, MMP10, CCNB1, IRAK1, PLK2 genes, and the increase in the expression of PTEN, CASP7, p53 genes were detected. CONCLUSION: Aurora kinases inhibitor CCT137690 displays promising anticancer activity in melanoma and especially melanoma cancer stem cells. The effect of CCT137690 on melanoma and MCSC may provide a new approach to treatment protocols.


Subject(s)
Antineoplastic Agents/pharmacology , Aurora Kinase A/antagonists & inhibitors , Imidazoles/pharmacology , Melanoma/drug therapy , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Aurora Kinase A/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Imidazoles/chemistry , Melanoma/metabolism , Melanoma/pathology , Protein Kinase Inhibitors/chemistry , Pyridines/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
2.
J Photochem Photobiol B ; 131: 31-42, 2014 Feb 05.
Article in English | MEDLINE | ID: mdl-24480545

ABSTRACT

Four new silver(I) saccharinate (sac) complexes, [Ag(µ-sac)(PPh3)]2 (1), [Ag(µ-sac)(PPh2Cy)]2 (2), [Ag(µ-sac)(PPhCy2)]2 (3) and [Ag(µ-sac)(PCy3)]n (4), where PPh3=triphenylphosphane, PPh2Cy=cyclohexyldiphenylphosphane, PPhCy2=dicyclohexylphenylphosphane and PCy3=tricyclohexylphosphane, have been synthesized and fully characterized by elemental analysis, IR, NMR, ESI-MS and single crystal X-ray diffraction. Fluorescence ethidium bromide displacement indicate that all complexes bind to fish sperm (FS) DNA by intercalation with binding constants (KA) of 29.1±0.26×10(5)M(-1) for 1, 2.54±0.12×10(5)M(-1) for 2, 2.42±0.08×10(5)M(-1) for 3, 0.19±0.03×10(5)M(-1) for 4. The relative viscosities of the FS-DNA solutions increase with increasing of the complex concentration, providing strong evidence for the intercalation mode. The gel electrophoresis assay further confirms their binding with the pBR322 plasmid DNA. The MIC values of the silver(I) complexes are generally higher than those of AgNO3 and silver sulfadiazine, but 1 presents a promising activity against Salmonellatyphimurium and Staphylococcusaureus. All complexes are highly cytotoxic on human lung carcinoma (A549) and human breast adenocarcinoma (MCF-7) cell lines with IC50 values ranging from 0.82 to 3.13µM.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , DNA/metabolism , Silver Compounds/chemistry , Anti-Bacterial Agents/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Cell Line, Tumor/drug effects , Chemistry Techniques, Synthetic , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Humans , Microbial Sensitivity Tests , Molecular Structure , Phosphines/chemistry , Saccharin/chemistry , Silver Compounds/chemical synthesis , Silver Compounds/pharmacology
3.
J Biol Inorg Chem ; 19(1): 29-44, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24132752

ABSTRACT

A series of new silver(I) saccharinate (sac) complexes, [Ag2(sac)2(µ-dppm)H2O]·H2O (1), {[Ag2(µ-sac)2(µ-dppe)]·3H2O·CH2Cl2} n (2), [Ag2(µ-sac)2(µ-dppp)] n (3), and [Ag(sac)(µ-dppb)] n (4) [dppm is 1,1-bis(diphenylphosphino)methane, dppe is 1,2-bis(diphenylphosphino)ethane, dppp is 1,3-bis(diphenylphosphino)propane, and dppb is 1,4-bis(diphenylphosphino)butane], have been synthesized and characterized by C, H, N elemental analysis, IR spectroscopy, (1)H NMR, (13)C NMR, and (31)P NMR spectroscopy, electrospray ionization mass spectrometry, and thermogravimetry-differential thermal analysis. Single-crystal X-ray studies show that the diphosphanes act as bridging ligands to yield a dinuclear complex (1) and one-dimensional coordination polymers (2 and 4), whereas the sac ligand adopts a µ2-N/O bridging mode in 2, and is N-coordinated in 1 and 4. The interaction of the silver(I) complexes with fish sperm DNA was investigated using UV-vis spectroscopy, fluorescence spectroscopy, and agarose gel electrophoresis. The binding studies indicate that the silver(I) complexes can interact with fish sperm DNA through intercalation, and complexes 1 and 3 have the highest binding affinity. The gel electrophoresis assay further confirms the binding of the complexes with the pBR322 plasmid DNA. The minimum inhibitory concentrations of the complexes indicate that complex 1 exhibits very high antibacterial activity against standard bacterial strains of Escherichia coli, Salmonella typhimurium, and Staphylococcus aureus, being much higher than those of AgNO3, silver sulfadiazine, ciprofloxacin, and gentamicin. Moreover, complexes 1-3 exhibit very high cytotoxic activity against A549 and MCF-7 cancer cell lines, compared with AgNO3 and cisplatin. The bacterial and cell growth inhibitions of the silver(I) complexes are closely related to their DNA binding affinities.


Subject(s)
Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemistry , Coordination Complexes/chemistry , DNA/metabolism , Phosphines/chemistry , Zinc/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Bacteria/drug effects , Bacterial Infections/drug therapy , Cell Line , Cell Line, Tumor , Coordination Complexes/chemical synthesis , Coordination Complexes/pharmacology , Humans , Models, Molecular , Neoplasms/drug therapy , Phosphines/chemical synthesis , Phosphines/pharmacology , Zinc/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...