Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Microbiome ; 12(1): 16, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287457

ABSTRACT

BACKGROUND: Many arthropods rely on their gut microbiome to digest plant material, which is often low in nitrogen but high in complex polysaccharides. Detritivores, such as millipedes, live on a particularly poor diet, but the identity and nutritional contribution of their microbiome are largely unknown. In this study, the hindgut microbiota of the tropical millipede Epibolus pulchripes (large, methane emitting) and the temperate millipede Glomeris connexa (small, non-methane emitting), fed on an identical diet, were studied using comparative metagenomics and metatranscriptomics. RESULTS: The results showed that the microbial load in E. pulchripes is much higher and more diverse than in G. connexa. The microbial communities of the two species differed significantly, with Bacteroidota dominating the hindguts of E. pulchripes and Proteobacteria (Pseudomonadota) in G. connexa. Despite equal sequencing effort, de novo assembly and binning recovered 282 metagenome-assembled genomes (MAGs) from E. pulchripes and 33 from G. connexa, including 90 novel bacterial taxa (81 in E. pulchripes and 9 in G. connexa). However, despite this taxonomic divergence, most of the functions, including carbohydrate hydrolysis, sulfate reduction, and nitrogen cycling, were common to the two species. Members of the Bacteroidota (Bacteroidetes) were the primary agents of complex carbon degradation in E. pulchripes, while members of Proteobacteria dominated in G. connexa. Members of Desulfobacterota were the potential sulfate-reducing bacteria in E. pulchripes. The capacity for dissimilatory nitrate reduction was found in Actinobacteriota (E. pulchripes) and Proteobacteria (both species), but only Proteobacteria possessed the capacity for denitrification (both species). In contrast, some functions were only found in E. pulchripes. These include reductive acetogenesis, found in members of Desulfobacterota and Firmicutes (Bacillota) in E. pulchripes. Also, diazotrophs were only found in E. pulchripes, with a few members of the Firmicutes and Proteobacteria expressing the nifH gene. Interestingly, fungal-cell-wall-degrading glycoside hydrolases (GHs) were among the most abundant carbohydrate-active enzymes (CAZymes) expressed in both millipede species, suggesting that fungal biomass plays an important role in the millipede diet. CONCLUSIONS: Overall, these results provide detailed insights into the genomic capabilities of the microbial community in the hindgut of millipedes and shed light on the ecophysiology of these essential detritivores. Video Abstract.


Subject(s)
Arthropods , Gastrointestinal Microbiome , Animals , Gastrointestinal Microbiome/genetics , Phylogeny , Bacteria , Arthropods/genetics , Metagenome , Bacteroidetes/genetics , Proteobacteria/genetics , Metagenomics , Carbohydrates , Nitrogen/metabolism , Sulfates/metabolism
2.
Life (Basel) ; 13(5)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37240755

ABSTRACT

In this paper, the growth requirements, fermentation pattern, and hydrolytic enzymatic activities of anaerobic ciliates collected from the hindgut of the African tropical millipede Archispirostreptus gigas are described. Single-cell molecular analysis showed that ciliates from the millipede hindgut could be assigned to the Nyctotherus velox and a new species named N. archispirostreptae n. sp. The ciliate N. velox can grow in vitro with unspecified prokaryotic populations and various plant polysaccharides (rice starch-RS, xylan, crystalline cellulose20-CC, carboxymethylcellulose-CMC, and inulin) or without polysaccharides (NoPOS) in complex reduced medium with soluble supplements (peptone, glucose, and vitamins). Specific catalytic activity (nkat/g of protein) of α amylase of 300, xylanase of 290, carboxymethylcellulase of 190, and inulinase of 170 was present in the crude protein extract of N. velox. The highest in vitro dry matter digestibility was observed in RS and inulin after 96 h of fermentation. The highest methane concentration was observed in xylan and inulin substrates. The highest short-chain fatty acid concentration was observed in RS, inulin, and xylan. In contrast, the highest ammonia concentration was observed in NoPOS, CMC, and CC. The results indicate that starch is the preferred substrate of the N. velox. Hydrolytic enzyme activities of N. velox showed that the ciliates contribute to the fermentation of plant polysaccharides in the gut of millipedes.

3.
World J Microbiol Biotechnol ; 39(7): 169, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37186294

ABSTRACT

Lignocellulose biomass has recently been considered a cost-effective and renewable energy source within circular economy management. Cellulases are important key enzymes for simple, fast, and clean biomass decomposition. The intestinal tract of millipedes is the environment which can provide promising microbial strains with cellulolytic potential. In the present study, we used the tropical millipede Telodeinopus aoutii as an experimental organism. Within a feeding test in which millipedes were fed with oak and maple leaf litter, we focused on isolating culturable cellulolytic microbiota from the millipede gut. Several growth media selecting for actinobacteria, bacteria, and fungi have been used to cultivate microbial strains with cellulolytic activities. Our results showed that oak-fed millipedes provided a higher number of culturable bacteria and a more diversified microbial community than maple-fed ones. The screening for cellulolytic activity using Congo red revealed that about 30% of bacterial and fungal phylotypes isolated from the gut content of T. aoutii, produced active cellulases in vitro. Actinobacteria Streptomyces and Kitasatospora were the most active cellulolytic genera on Congo red test. In contrast, fungi Aspergillus, Penicillium, Cheatomium, Clonostachys, and Trichoderma showed the highest protein-specific cellulase activity quantified by 4-Methylumbelliferyl ß-D-cellobioside (4-MUC). Our findings provide a basis for future research on the enzyme activities of microbes isolated from the digestive tracts of invertebrates and their biocatalytic role in biomass degradation.


Subject(s)
Cellulase , Cellulases , Congo Red , Cellulases/metabolism , Cellulase/metabolism , Bacteria/genetics , Bacteria/metabolism
4.
Sci Rep ; 12(1): 16173, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36171216

ABSTRACT

Invertebrate-microbial associations are widespread in the biosphere and are often related to the function of novel genes, fitness advantages, and even speciation events. Despite ~ 13,000 species of millipedes identified across the world, millipedes and their gut microbiota are markedly understudied compared to other arthropods. Exploring the contribution of individual host-associated microbes is often challenging as many are uncultivable. In this study, we conducted metatranscriptomic profiling of different body segments of a millipede at the holobiont level. This is the first reported transcriptome assembly of a tropical millipede Telodeinopus aoutii (Demange, 1971), as well as the first study on any Myriapoda holobiont. High-throughput RNA sequencing revealed that Telodeinopus aoutii contained > 90% of the core Arthropoda genes. Proteobacteria, Bacteroidetes, Firmicutes, and Euryarchaeota represented dominant and functionally active phyla in the millipede gut, among which 97% of Bacteroidetes and 98% of Firmicutes were present exclusively in the hindgut. A total of 37,831 predicted protein-coding genes of millipede holobiont belonged to six enzyme classes. Around 35% of these proteins were produced by microbiota in the hindgut and 21% by the host in the midgut. Our results indicated that although major metabolic pathways operate at the holobiont level, the involvement of some host and microbial genes are mutually exclusive and microbes predominantly contribute to essential amino acid biosynthesis, short-chain fatty acid metabolism, and fermentation.


Subject(s)
Arthropods , Gastrointestinal Microbiome , Amino Acids, Essential , Animals , Arthropods/genetics , Bacteroidetes , Fatty Acids, Volatile , Gastrointestinal Microbiome/genetics
5.
Appl Environ Microbiol ; 87(15): e0061421, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34020937

ABSTRACT

Methanogens represent the final decomposition step in anaerobic degradation of organic matter, occurring in the digestive tracts of various invertebrates. However, factors determining their community structure and activity in distinct gut sections are still debated. In this study, we focused on the tropical millipede species Archispirostreptus gigas (Diplopoda, Spirostreptidae) and Epibolus pulchripes (Diplopoda, Pachybolidae), which release considerable amounts of methane. We aimed to characterize relationships between physicochemical parameters, methane production rates, and methanogen community structure in the two major gut sections, midgut and hindgut. Microsensor measurements revealed that both sections were strictly anoxic, with reducing conditions prevailing in both millipedes. Hydrogen concentration peaked in the anterior hindgut of E. pulchripes. In both species, the intestinal pH was significantly higher in the hindgut than in the midgut. An accumulation of acetate and formate in the gut indicated bacterial fermentation activities in the digestive tracts of both species. Phylogenetic analysis of 16S rRNA genes showed a prevalence of Methanobrevibacter spp. (Methanobacteriales), accompanied by a small fraction of so-far-unclassified "Methanomethylophilaceae" (Methanomassiliicoccales), in both species, which suggests that methanogenesis is mostly hydrogenotrophic. We conclude that anoxic conditions, negative redox potential, and bacterial production of hydrogen and formate promote gut colonization by methanogens. The higher activities of methanogens in the hindgut are explained by the higher pH of this compartment and their association with ciliates, which are restricted to this compartment and present an additional source of methanogenic substrates. IMPORTANCE Methane (CH4) is the second most important atmospheric greenhouse gas after CO2 and is believed to account for 17% of global warming. Methanogens are a diverse group of archaea and can be found in various anoxic habitats, including digestive tracts of plant-feeding animals. Termites, cockroaches, the larvae of scarab beetles, and millipedes are the only arthropods known to host methanogens and emit large amounts of methane. Millipedes are ranked as the third most important detritivores after termites and earthworms, and they are considered keystone species in many terrestrial ecosystems. Both methane-producing and non-methane-emitting species of millipedes have been observed, but what limits their methanogenic potential is not known. In the present study, we show that physicochemical gut conditions and the distribution of symbiotic ciliates are important factors determining CH4 emission in millipedes. We also found close similarities to other methane-emitting arthropods, which might be associated with their similar plant-feeding habits.


Subject(s)
Arthropods/microbiology , Gastrointestinal Microbiome , Gastrointestinal Tract/metabolism , Methane/metabolism , Animals , Bacteria/genetics , Bacteria/metabolism , Formates/metabolism , Gastrointestinal Microbiome/genetics , Hydrogen/metabolism , Hydrogen-Ion Concentration , Oxidation-Reduction , Oxygen/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics
6.
J Anim Ecol ; 90(8): 1919-1933, 2021 08.
Article in English | MEDLINE | ID: mdl-33914342

ABSTRACT

Trophic niche differentiation may explain coexistence and shape functional roles of species. In complex natural food webs, however, trophic niche parameters depicted by single and isolated methods may simplify the multidimensional nature of consumer trophic niches, which includes feeding processes such as food choice, ingestion, digestion, assimilation and retention. Here we explore the correlation and complementarity of trophic niche parameters tackled by four complementary methodological approaches, that is, visual gut content, digestive enzyme, fatty acid and stable isotope analyses-each assessing one or few feeding processes, and demonstrate the power of method combination. Focusing on soil ecosystems, where many omnivore species with cryptic feeding habits coexist, we chose Collembola as an example. We compiled 15 key trophic niche parameters for 125 species from 40 studies. We assessed correlations among trophic niche parameters and described variation of these parameters in different Collembola species, families and across life-forms, which represent microhabitat specialisation. Correlation between trophic niche parameters was weak in 45 out of 64 pairwise comparisons, pointing at complementarity of the four methods. Jointly, the results indicated that fungal- and plant-feeding Collembola assimilate storage, rather than structural polysaccharides, and suggested bacterial feeding as a potential alternative feeding strategy. Gut content and fatty acid analyses suggested alignment between ingestion and assimilation/retention processes in fungal- and plant-feeding Collembola. From the 15 trophic niche parameters, six were related to Collembola family identity, suggesting that not all trophic niche dimensions are phylogenetically structured. Only three parameters were related to the life-forms, suggesting that species use various feeding strategies when living in the same microenvironments. Consumers can meet their nutritional needs by varying their food choices, ingestion and digestion strategies, with the connection among different feeding processes being dependent on the consumed resource and consumer adaptations. Multiple methods reveal different dimensions, together drawing a comprehensive picture of the trophic niche. Future studies applying the multidimensional trophic niche approach will allow us to trace trophic complexity and reveal niche partitioning of omnivorous species and their functional roles, especially in cryptic environments such as soils, caves, deep ocean or benthic ecosystems.


Subject(s)
Arthropods , Ecosystem , Animals , Fatty Acids , Food Chain , Nitrogen Isotopes/analysis
7.
Zootaxa ; 4802(3): zootaxa.4802.3.4, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-33056044

ABSTRACT

Up to the present, the genus Archiboreoiulus included only two species: A. sollaudi from France and A. pallidus with a wide European distribution range. Here we describe a previously unknown species of the genus Archiboreoiulus, A. serbansarbui, collected from the mesothermal sulfurous Movile Cave, Mangalia, Romania, harboring a rich and diverse troglobitic community.


Subject(s)
Arthropods , Caves , Animals , Phylogeny , Romania
8.
J Therm Biol ; 78: 391-400, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30509663

ABSTRACT

The climatic variability hypothesis was applied to the thermal tolerance of edaphic and cave Collembola occupying contrasting environments. Collembola belonged to four categories - trogloxene, subtroglophile, eutroglophile and troglobiont - with a different degree of affinity to subterranean habitats. Altogether, specimens of 17 species were exposed to a one-hour laboratory survival test. The impact of temperature, species and species-temperature interaction on cold and heat survival was statistically significant. There was a decrease trend in cold and heat tolerance from trogloxenes, over subtroglophiles and eutroglophiles to troglobionts. It was shown that obligate cave species, restricted to climatic-stable cave conditions, retain a functional thermal resistance, i.e. the genetically determined ability to tolerate relatively broader temperature ranges. Our results outlined the direct relationship between the thermal tolerances of species and the size of their geographic distributions. It was also observed that cold resistance of Collembola decreased significantly with increasing species body length, indicating that body size plays an important role in temperature tolerances of arthropods inhabiting soil and subterranean habitats.


Subject(s)
Arthropods/physiology , Body Size , Body Temperature , Cold Temperature , Acclimatization , Animals , Caves , Climate
9.
Environ Sci Pollut Res Int ; 25(26): 26267-26278, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29978314

ABSTRACT

Vermicomposting is a process of degradation of biowaste which involves complex interactions between earthworms and microorganisms. This process lacks a thermophilic stage and thus, the possible presence of pathogens poses a potential health hazard. To assess the contribution of earthworms during the selective reduction of various pathogens, apple pomace substrate was artificially inoculated with Escherichia coli, Salmonella spp., thermotolerant coliform bacteria, and Enterococci. The artificial bacterial load did not influence the weight, reproduction, or intestinal enzymatic activity of the earthworms, but it caused reversible histological changes to the epithelial layer and chloragogen tissue of their intestines. The reduction of pathogenic Enterococci and E. coli from the substrate was accelerated by earthworms (63-fold, 77-fold, and 840-fold for Enterococci and 6-fold, 36-fold, and 7-fold for E. coli inoculated substrates after 2, 4, and 6 weeks, respectively). Moreover, the rapid elimination of Salmonella spp. was supported by the upregulated expression of two pattern recognition receptors which bind lipopolysaccharide, coelomic cytolytic factor, and lipopolysaccharide-binding protein. Further, the microbiomes of the intestine and the composting substrate differed significantly. Graphical abstract.


Subject(s)
Composting/methods , Gastrointestinal Microbiome , Oligochaeta/physiology , Soil Microbiology , Animals , Escherichia coli , Oligochaeta/microbiology
10.
Zookeys ; (515): 111-25, 2015.
Article in English | MEDLINE | ID: mdl-26261444

ABSTRACT

The body surface of the terrestrial isopod Mesoniscusgraniger (Frivaldsky, 1863) showed blue autofluorescence under UV light (330-385 nm), using epifluorescence microscopy and also in living individuals under a UV lamp with excitation light of 365 nm. Some morphological cuticular structures expressed a more intense autofluorescence than other body parts. For this reason, only the cuticle was analyzed. The parameters of autofluorescence were investigated using spectroscopic methods (molecular spectroscopy in infrared, ultraviolet-visible, fluorescence, and X-ray fluorescence spectroscopy) in samples of two subspecies of Mesoniscusgraniger preserved in ethanol. Samples excited by UV light (from 350 to 380 nm) emitted blue light of wavelengths 419, 420, 441, 470 and 505 nm (solid phase) and 420, 435 and 463 (ethanol extract). The results showed that the autofluorescence observed from living individuals may be due to some ß-carboline or coumarin derivatives, some crosslinking structures, dityrosine, or due to other compounds showing similar excitation-emission characteristics.

11.
PLoS One ; 9(7): e102659, 2014.
Article in English | MEDLINE | ID: mdl-25028969

ABSTRACT

Methane production by intestinal methanogenic Archaea and their community structure were compared among phylogenetic lineages of millipedes. Tropical and temperate millipedes of 35 species and 17 families were investigated. Species that emitted methane were mostly in the juliform orders Julida, Spirobolida, and Spirostreptida. The irregular phylogenetic distribution of methane production correlated with the presence of the methanogen-specific mcrA gene. The study brings the first detailed survey of methanogens' diversity in the digestive tract of millipedes. Sequences related to Methanosarcinales, Methanobacteriales, Methanomicrobiales and some unclassified Archaea were detected using molecular profiling (DGGE). The differences in substrate preferences of the main lineages of methanogenic Archaea found in different millipede orders indicate that the composition of methanogen communities may reflect the differences in available substrates for methanogenesis or the presence of symbiotic protozoa in the digestive tract. We conclude that differences in methane production in the millipede gut reflect differences in the activity and proliferation of intestinal methanogens rather than an absolute inability of some millipede taxa to host methanogens. This inference was supported by the general presence of methanogenic activity in millipede faecal pellets and the presence of the 16S rRNA gene of methanogens in all tested taxa in the two main groups of millipedes, the Helminthophora and the Pentazonia.


Subject(s)
Arthropods/microbiology , Biodiversity , Euryarchaeota/genetics , Euryarchaeota/physiology , Gastrointestinal Tract/microbiology , Methane/biosynthesis , Animals , Base Sequence , Czech Republic , Denaturing Gradient Gel Electrophoresis , Euryarchaeota/metabolism , Feces/chemistry , Methane/metabolism , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Romania , Sequence Analysis, DNA , Slovakia
12.
J Insect Physiol ; 67: 64-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24971929

ABSTRACT

The saprophagous larvae of bibionid flies harbor bacteria in their alkaline intestinal tracts, but little is known about the contribution of the gut microbiota to the digestion of their recalcitrant diet. In this study, we measured oxygen and hydrogen partial pressure, redox potential and pH in the midgut, gastric caeca and hindgut of larvae of the bibionid fly Penthetria holosericea with Clark-type O2 and H2 microsensors, platinum redox microelectrodes, and LIX-type pH microelectrodes. The center of the midgut lumen was anoxic, whereas gastric caeca and hindgut were hypoxic. However, redox potential profiles indicated oxidizing conditions throughout the gut, with lowest values in the midgut (+20 to +60mV). Hydrogen production was not detected. The midgut was extremely alkaline (pH around 11), whereas hindgut and gastric caeca were neutral to slightly alkaline. While HPLC analysis showed high concentrations of glucose in the midgut (15mM) and gastric caeca (27mM), the concentrations of microbial fermentation products such as lactate (2-4mM), acetate (<1mM) and succinate (<0.5mM) were low in all gut regions, suggesting that the contribution of microorganisms to the digestive process, particularly in the alkaline midgut, is only of minor importance. We conclude that the digestive strategy of the saprophytic larva of P. holosericea, which feeds selectively on decomposed leaves and its own microbe-rich faeces, differs fundamentally from those of detritivorous and humivorous insects, which host a highly active, fermentative microbiota in their alkaline midgut or hindgut compartments.


Subject(s)
Diptera/microbiology , Diptera/physiology , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/physiology , Larva/microbiology , Larva/physiology , Animals , Bacteria/growth & development , Bacteria/metabolism , Digestive System , Feces/microbiology , Fermentation , Gastrointestinal Tract/chemistry , Hydrogen/metabolism , Hydrogen-Ion Concentration , Oxidation-Reduction , Oxygen/metabolism
13.
J Invertebr Pathol ; 114(3): 217-21, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23999244

ABSTRACT

Earthworms Eisenia andrei, similarly to other invertebrates, rely on innate defense mechanisms based on the capability to recognize and respond to nonself. Here, we show a correlation between the expression of CCF, a crucial pattern-recognition receptor, and lysozyme, with enzyme activities in the gut of E. andrei earthworms following a microbial challenge. These data suggest that enzyme activities important for the release and recognition of molecular patterns by pattern-recognition molecules, as well as enzymes involved in effector pathways, are modulated during the microbial challenge. In particular, protease, laminarinase, and glucosaminidase activities were increased in parallel to up-regulated CCF and lysozyme expression.


Subject(s)
Muramidase/physiology , Oligochaeta/enzymology , Animals , Bacillus subtilis/immunology , Cellulases/metabolism , Escherichia coli/immunology , Hexosaminidases/metabolism , Immunity, Innate , Muramidase/metabolism , Oligochaeta/immunology , Oligochaeta/microbiology , Peptide Hydrolases/metabolism , RNA, Messenger/metabolism , Saccharomyces cerevisiae/immunology , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...