Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 213
Filter
2.
Nat Commun ; 15(1): 5937, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009564

ABSTRACT

How disruptions to normal cell differentiation link to tumorigenesis remains incompletely understood. Wilms tumor, an embryonal tumor associated with disrupted organogenesis, often harbors mutations in epigenetic regulators, but their role in kidney development remains unexplored. Here, we show at single-cell resolution that a Wilms tumor-associated mutation in the histone acetylation reader ENL disrupts kidney differentiation in mice by rewiring the gene regulatory landscape. Mutant ENL promotes nephron progenitor commitment while restricting their differentiation by dysregulating transcription factors such as Hox clusters. It also induces abnormal progenitors that lose kidney-associated chromatin identity. Furthermore, mutant ENL alters the transcriptome and chromatin accessibility of stromal progenitors, resulting in hyperactivation of Wnt signaling. The impacts of mutant ENL on both nephron and stroma lineages lead to profound kidney developmental defects and postnatal mortality in mice. Notably, a small molecule inhibiting mutant ENL's histone acetylation binding activity largely reverses these defects. This study provides insights into how mutations in epigenetic regulators disrupt kidney development and suggests a potential therapeutic approach.


Subject(s)
Cell Differentiation , Kidney , Mutation , Single-Cell Analysis , Animals , Mice , Kidney/metabolism , Kidney/pathology , Cell Differentiation/genetics , Gene Expression Regulation, Developmental , Chromatin/metabolism , Epigenesis, Genetic , Wilms Tumor/genetics , Wilms Tumor/pathology , Wilms Tumor/metabolism , Histones/metabolism , Acetylation , Humans , Organogenesis/genetics , Wnt Signaling Pathway/genetics , Nephrons/metabolism , Nephrons/pathology , Nephrons/embryology , Transcriptome/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Female , Male , Multiomics
3.
J Am Soc Nephrol ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38857203

ABSTRACT

BACKGROUND: Chemical modifications on RNA profoundly impact RNA function and regulation. m6A, the most abundant RNA modification in eukaryotes, plays a pivotal role in diverse cellular processes and disease mechanisms. However, its importance is understudied in human chronic kidney disease (CKD) samples regarding its influence on pathological mechanisms. METHODS: LC-MS/MS and Methylated RNA Immunoprecipitation (MeRIP) sequencing were utilized to examine alterations in m6A levels and patterns in CKD samples. Overexpression of the m6A writer METTL3 in cultured kidney tubular cells was performed to confirm the impact of m6A in tubular cells and explore the biological functions of m6A modification on target genes. Additionally, tubule-specific deletion of Mettl3 (Ksp-Cre Mettl3f/f) mice and the use of anti-sense oligonucleotides inhibiting Mettl3 expression were utilized to reduce m6A modification in an animal kidney disease model. RESULTS: By examining 127 human CKD samples, we observed a significant increase in m6A modification and METTL3 expression in diseased kidneys. Epitranscriptomic analysis unveiled an enrichment of m6A modifications in transcripts associated with the activation of inflammatory signaling pathways, particularly the cGAS-STING pathway. m6A hypermethylation increased mRNA stability in cGAS and STING1, as well as elevated the expression of key proteins within the cGAS-STING pathway. Both the tubule-specific deletion of Mettl3 and the use of anti-sense oligonucleotides to inhibit Mettl3 expression protected mice from inflammation, reduced cytokine expression, decreased immune cell recruitment, and attenuated kidney fibrosis. CONCLUSIONS: Our research revealed heightened METTL3-mediated m6A modification in fibrotic kidneys, particularly enriching the cGAS-STING pathway. This hypermethylation increased mRNA stability for cGAS and STING1, leading to sterile inflammation and fibrosis.

4.
Kidney Int ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844295

ABSTRACT

Uncontrolled complement activation can cause or contribute to glomerular injury in multiple kidney diseases. Although complement activation plays a causal role in atypical hemolytic uremic syndrome and C3 glomerulopathy, over the past decade, a rapidly accumulating body of evidence has shown a role for complement activation in multiple other kidney diseases, including diabetic nephropathy and several glomerulonephritides. The number of available complement inhibitor therapies has also increased during the same period. In 2022, Kidney Diseases: Improving Global Outcomes (KDIGO) convened a Controversies Conference, "The Role of Complement in Kidney Disease," to address the expanding role of complement dysregulation in the pathophysiology, diagnosis, and management of various glomerular diseases, diabetic nephropathy, and other forms of hemolytic uremic syndrome. Conference participants reviewed the evidence for complement playing a primary causal or secondary role in progression for several disease states and considered how evidence of complement involvement might inform management. Participating patients with various complement-mediated diseases and caregivers described concerns related to life planning, implications surrounding genetic testing, and the need for inclusive implementation of effective novel therapies into clinical practice. The value of biomarkers in monitoring disease course and the role of the glomerular microenvironment in complement response were examined, and key gaps in knowledge and research priorities were identified.

5.
Bioinform Adv ; 4(1): vbae076, 2024.
Article in English | MEDLINE | ID: mdl-38846137

ABSTRACT

Motivation: Reduced Representation Bisulfite Sequencing (RRBS) is a popular approach to determine DNA methylation of the CpG-rich regions of the genome. However, we observed that false positive differentially methylated sites (DMS) are also identified using the standard computational analysis. Results: During RRBS library preparation the MspI digested DNA undergo end-repair by a cytosine at the 3' end of the fragments. After sequencing, Trim Galore cuts these end-repaired nucleotides. However, Trim Galore fails to detect end-repair when it overlaps with the 3' end of the sequencing reads. We found that these non-trimmed cytosines bias methylation calling, thus, can identify DMS erroneously. To circumvent this problem, we developed improve-RRBS, which efficiently identifies and hides these cytosines from methylation calling with a false positive rate of maximum 0.5%. To test improve-RRBS, we investigated four datasets from four laboratories and two different species. We found non-trimmed 3' cytosines in all datasets analyzed and as much as >50% of false positive DMS under certain conditions. By applying improve-RRBS, these DMS completely disappeared from all comparisons. Availability and implementation: Improve-RRBS is a freely available python package https://pypi.org/project/iRRBS/ or https://github.com/fothia/improve-RRBS to be implemented in RRBS pipelines.

6.
bioRxiv ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38766219

ABSTRACT

Cell differentiation during organogenesis relies on precise epigenetic and transcriptional control. Disruptions to this regulation can result in developmental abnormalities and malignancies, yet the underlying mechanisms are not well understood. Wilms tumors, a type of embryonal tumor closely linked to disrupted organogenesis, harbor mutations in epigenetic regulators in 30-50% of cases. However, the role of these regulators in kidney development and pathogenesis remains unexplored. By integrating mouse modeling, histological characterizations, and single-cell transcriptomics and chromatin accessibility profiling, we show that a Wilms tumor-associated mutation in the chromatin reader protein ENL disrupts kidney development trajectory by rewiring the gene regulatory landscape. Specifically, the mutant ENL promotes the commitment of nephron progenitors while simultaneously restricting their differentiation by dysregulating key transcription factor regulons, particularly the HOX clusters. It also induces the emergence of abnormal progenitor cells that lose their chromatin identity associated with kidney specification. Furthermore, the mutant ENL might modulate stroma-nephron interactions via paracrine Wnt signaling. These multifaceted effects caused by the mutation result in severe developmental defects in the kidney and early postnatal mortality in mice. Notably, transient inhibition of the histone acetylation binding activity of mutant ENL with a small molecule displaces transcriptional condensates formed by mutant ENL from target genes, abolishes its gene activation function, and restores developmental defects in mice. This work provides new insights into how mutations in epigenetic regulators can alter the gene regulatory landscape to disrupt kidney developmental programs at single-cell resolution in vivo . It also offers a proof-of-concept for the use of epigenetics-targeted agents to rectify developmental defects.

7.
Kidney Int ; 106(1): 24-34, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38614389

ABSTRACT

Kidney epithelial cells have very high energy requirements, which are largely met by fatty acid oxidation. Complex changes in lipid metabolism are observed in patients with kidney disease. Defects in fatty acid oxidation and increased lipid uptake, especially in the context of hyperlipidemia and proteinuria, contribute to this excess lipid build-up and exacerbate kidney disease development. Recent studies have also highlighted the role of increased de novo lipogenesis in kidney fibrosis. The defect in fatty acid oxidation causes energy starvation. Increased lipid uptake, synthesis, and lower fatty acid oxidation can cause toxic lipid build-up, reactive oxygen species generation, and mitochondrial damage. A better understanding of these metabolic processes may open new treatment avenues for kidney diseases by targeting lipid metabolism.


Subject(s)
Fatty Acids , Kidney Tubules , Lipid Metabolism , Humans , Kidney Tubules/metabolism , Kidney Tubules/pathology , Animals , Fatty Acids/metabolism , Kidney Diseases/metabolism , Kidney Diseases/pathology , Mitochondria/metabolism , Lipogenesis , Oxidation-Reduction , Fibrosis , Reactive Oxygen Species/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Energy Metabolism
8.
Kidney Int ; 105(5): 935-952, 2024 May.
Article in English | MEDLINE | ID: mdl-38447880

ABSTRACT

The 14th International Podocyte Conference took place in Philadelphia, Pennsylvania, USA from May 23 to 26, 2023. It commenced with an early-career researchers' meeting on May 23, providing young scientists with a platform to present and discuss their research findings. Throughout the main conference, 29 speakers across 9 sessions shared their insights on podocyte biology, glomerular medicine, novel technologic advancements, and translational approaches. Additionally, the event featured 3 keynote lectures addressing engineered chimeric antigen receptor T cell- and mRNA-based therapies and the use of biobanks for enhanced disease comprehension. Furthermore, 4 brief oral abstract sessions allowed scientists to present their findings to a broad audience. The program also included a panel discussion addressing the challenges of conducting human research within the American Black community. Remarkably, after a 5-year hiatus from in-person conferences, the 14th International Podocyte Conference successfully convened scientists from around the globe, fostering the presentation and discussion of crucial research findings, as summarized in this review. Furthermore, to ensure continuous and sustainable education, research, translation, and trial medicine related to podocyte and glomerular diseases for the benefit of patients, the International Society of Glomerular Disease was officially launched during the conference.


Subject(s)
Kidney Diseases , Podocytes , Humans , Kidney Glomerulus , Kidney Diseases/therapy , Biology
11.
bioRxiv ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38370682

ABSTRACT

Genome-wide association studies (GWAS) have identified over 800 loci associated with kidney function, yet the specific genes, variants, and pathways involved remain elusive. By integrating kidney function GWAS, human kidney expression and methylation quantitative trait analyses, we identified Ten-Eleven Translocation (TET) DNA demethylase 2: TET2 as a novel kidney disease risk gene. Utilizing single-cell chromatin accessibility and CRISPR-based genome editing, we highlight GWAS variants that influence TET2 expression in kidney proximal tubule cells. Experiments using kidney-tubule-specific Tet2 knockout mice indicated its protective role in cisplatin-induced acute kidney injury, as well as chronic kidney disease and fibrosis, induced by unilateral ureteral obstruction or adenine diet. Single-cell gene profiling of kidneys from Tet2 knockout mice and TET2- knock-down tubule cells revealed the altered expression of DNA damage repair and chromosome segregation genes, notably including INO80 , another kidney function GWAS target gene itself. Remarkably both TET2- null and INO80- null cells exhibited an increased accumulation of micronuclei after injury, leading to the activation of cytosolic nucleotide sensor cGAS-STING. Genetic deletion of cGAS or STING in kidney tubules or pharmacological inhibition of STING protected TET2 null mice from disease development. In conclusion, our findings highlight TET2 and INO80 as key genes in the pathogenesis of kidney diseases, indicating the importance of DNA damage repair mechanisms.

12.
Genome Biol ; 25(1): 14, 2024 01 12.
Article in English | MEDLINE | ID: mdl-38217002

ABSTRACT

Existing methods for analysis of spatial transcriptomic data focus on delineating the global gene expression variations of cell types across the tissue, rather than local gene expression changes driven by cell-cell interactions. We propose a new statistical procedure called niche-differential expression (niche-DE) analysis that identifies cell-type-specific niche-associated genes, which are differentially expressed within a specific cell type in the context of specific spatial niches. We further develop niche-LR, a method to reveal ligand-receptor signaling mechanisms that underlie niche-differential gene expression patterns. Niche-DE and niche-LR are applicable to low-resolution spot-based spatial transcriptomics data and data that is single-cell or subcellular in resolution.


Subject(s)
Gene Expression Profiling , Transcriptome , Cell Communication
13.
Nat Biotechnol ; 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168986

ABSTRACT

Spatial transcriptomics (ST) has demonstrated enormous potential for generating intricate molecular maps of cells within tissues. Here we present iStar, a method based on hierarchical image feature extraction that integrates ST data and high-resolution histology images to predict spatial gene expression with super-resolution. Our method enhances gene expression resolution to near-single-cell levels in ST and enables gene expression prediction in tissue sections where only histology images are available.

14.
Nat Commun ; 15(1): 873, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287030

ABSTRACT

Epigenetic changes may fill a critical gap in our understanding of kidney disease development, as they not only reflect metabolic changes but are also preserved and transmitted during cell division. We conducted a genome-wide cytosine methylation analysis of 399 human kidney samples, along with single-nuclear open chromatin analysis on over 60,000 cells from 14 subjects, including controls, and diabetes and hypertension attributed chronic kidney disease (CKD) patients. We identified and validated differentially methylated positions associated with disease states, and discovered that nearly 30% of these alterations were influenced by underlying genetic variations, including variants known to be associated with kidney disease in genome-wide association studies. We also identified regions showing both methylation and open chromatin changes. These changes in methylation and open chromatin significantly associated gene expression changes, most notably those playing role in metabolism and expressed in proximal tubules. Our study further demonstrated that methylation risk scores (MRS) can improve disease state annotation and prediction of kidney disease development. Collectively, our results suggest a causal relationship between epigenetic changes and kidney disease pathogenesis, thereby providing potential pathways for the development of novel risk stratification methods.


Subject(s)
DNA Methylation , Renal Insufficiency, Chronic , Humans , DNA Methylation/genetics , Chromatin/genetics , Chromatin/metabolism , Genome-Wide Association Study , Kidney/metabolism , Epigenesis, Genetic , Renal Insufficiency, Chronic/pathology
15.
J Clin Invest ; 134(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37906287

ABSTRACT

Mineralocorticoid excess commonly leads to hypertension (HTN) and kidney disease. In our study, we used single-cell expression and chromatin accessibility tools to characterize the mineralocorticoid target genes and cell types. We demonstrated that mineralocorticoid effects were established through open chromatin and target gene expression, primarily in principal and connecting tubule cells and, to a lesser extent, in segments of the distal convoluted tubule cells. We examined the kidney-protective effects of steroidal and nonsteroidal mineralocorticoid antagonists (MRAs), as well as of amiloride, an epithelial sodium channel inhibitor, in a rat model of deoxycorticosterone acetate, unilateral nephrectomy, and high-salt consumption-induced HTN and cardiorenal damage. All antihypertensive therapies protected against cardiorenal damage. However, finerenone was particularly effective in reducing albuminuria and improving gene expression changes in podocytes and proximal tubule cells, even with an equivalent reduction in blood pressure. We noted a strong correlation between the accumulation of injured/profibrotic tubule cells expressing secreted posphoprotein 1 (Spp1), Il34, and platelet-derived growth factor subunit b (Pdgfb) and the degree of fibrosis in rat kidneys. This gene signature also showed a potential for classifying human kidney samples. Our multiomics approach provides fresh insights into the possible mechanisms underlying HTN-associated kidney disease, the target cell types, the protective effects of steroidal and nonsteroidal MRAs, and amiloride.


Subject(s)
Hypertension , Kidney Diseases , Rats , Humans , Animals , Mineralocorticoid Receptor Antagonists/pharmacology , Chromatin/genetics , Amiloride/pharmacology , Mineralocorticoids/pharmacology , Kidney , Kidney Diseases/genetics , Gene Expression Profiling
16.
NMR Biomed ; 37(1): e5036, 2024 01.
Article in English | MEDLINE | ID: mdl-37750009

ABSTRACT

During the early stages of diabetes, kidney oxygen utilization increases. The mismatch between oxygen demand and supply contributes to tissue hypoxia, a key driver of chronic kidney disease. Thus, whole-organ renal metabolic rate of oxygen (rMRO2 ) is a potentially valuable biomarker of kidney function. The key parameters required to determine rMRO2 include the renal blood flow rate (RBF) in the feeding artery and oxygen saturation in the draining renal vein (SvO2 ). However, there is currently no noninvasive method to quantify rMRO2 in absolute physiologic units. Here, a new MRI pulse sequence, Kidney Metabolism of Oxygen via T2 and Interleaved Velocity Encoding (K-MOTIVE), is described, along with evaluation of its performance in the human kidney in vivo. K-MOTIVE interleaves a phase-contrast module before a background-suppressed T2 -prepared balanced steady-state-free-precession (bSSFP) readout to measure RBF and SvO2 in a single breath-hold period of 22 s, yielding rMRO2 via Fick's principle. Variants of K-MOTIVE to evaluate alternative bSSFP readout strategies were studied. Kidney mass was manually determined from multislice gradient recalled echo images. Healthy subjects were recruited to quantify rMRO2 of the left kidney at 3-T field strength (N = 15). Assessments of repeat reproducibility and comparisons with individual measurements of RBF and SvO2 were performed, and the method's sensitivity was evaluated with a high-protein meal challenge (N = 8). K-MOTIVE yielded the following metabolic parameters: T2  = 157 ± 19 ms; SvO2  = 92% ± 6%; RBF = 400 ± 110 mL/min; and rMRO2  = 114 ± 117(µmol O2 /min)/100 g tissue. Reproducibility studies of T2 and RBF (parameters directly measured by K-MOTIVE) resulted in coefficients of variation less than 10% and intraclass correlation coefficients more than 0.75. The high-protein meal elicited an increase in rMRO2 , which was corroborated by serum biomarkers. The K-MOTIVE sequence measures SvO2 and RBF, the parameters necessary to quantify whole-organ rMRO2 , in a single breath-hold. The present work demonstrates that rMRO2 quantification is feasible with good reproducibility. rMRO2 is a potentially valuable physiological biomarker.


Subject(s)
Magnetic Resonance Imaging , Oxygen , Humans , Oxygen/metabolism , Reproducibility of Results , Magnetic Resonance Imaging/methods , Kidney/metabolism , Biomarkers
17.
J Clin Invest ; 134(4)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38051585

ABSTRACT

Worldwide, over 800 million people are affected by kidney disease, yet its pathogenesis remains elusive, hindering the development of novel therapeutics. In this study, we used kidney-specific expression of quantitative traits and single-nucleus open chromatin analysis to show that genetic variants linked to kidney dysfunction on chromosome 20 target the acyl-CoA synthetase short-chain family 2 (ACSS2). By generating ACSS2-KO mice, we demonstrated their protection from kidney fibrosis in multiple disease models. Our analysis of primary tubular cells revealed that ACSS2 regulated de novo lipogenesis (DNL), causing NADPH depletion and increasing ROS levels, ultimately leading to NLRP3-dependent pyroptosis. Additionally, we discovered that pharmacological inhibition or genetic ablation of fatty acid synthase safeguarded kidney cells against profibrotic gene expression and prevented kidney disease in mice. Lipid accumulation and the expression of genes related to DNL were elevated in the kidneys of patients with fibrosis. Our findings pinpoint ACSS2 as a critical kidney disease gene and reveal the role of DNL in kidney disease.


Subject(s)
Acetate-CoA Ligase , Kidney Diseases , Lipogenesis , Animals , Humans , Mice , Acetate-CoA Ligase/genetics , Fibrosis , Kidney/metabolism , Kidney Diseases/genetics , Kidney Diseases/metabolism , Kidney Tubules/metabolism , Lipogenesis/genetics
18.
Clin Transl Med ; 13(11): e1440, 2023 11.
Article in English | MEDLINE | ID: mdl-37948331

ABSTRACT

BACKGROUND: Lipids may influence cellular penetrance by viral pathogens and the immune response that they evoke. We deeply phenotyped the lipidomic response to SARs-CoV-2 and compared that with infection with other pathogens in patients admitted with acute respiratory distress syndrome to an intensive care unit (ICU). METHODS: Mass spectrometry was used to characterise lipids and relate them to proteins, peripheral cell immunotypes and disease severity. RESULTS: Circulating phospholipases (sPLA2, cPLA2 (PLA2G4A) and PLA2G2D) were elevated on admission in all ICU groups. Cyclooxygenase, lipoxygenase and epoxygenase products of arachidonic acid (AA) were elevated in all ICU groups compared with controls. sPLA2 predicted severity in COVID-19 and correlated with TxA2, LTE4 and the isoprostane, iPF2α-III, while PLA2G2D correlated with LTE4. The elevation in PGD2, like PGI2 and 12-HETE, exhibited relative specificity for COVID-19 and correlated with sPLA2 and the interleukin-13 receptor to drive lymphopenia, a marker of disease severity. Pro-inflammatory eicosanoids remained correlated with severity in COVID-19 28 days after admission. Amongst non-COVID ICU patients, elevations in 5- and 15-HETE and 9- and 13-HODE reflected viral rather than bacterial disease. Linoleic acid (LA) binds directly to SARS-CoV-2 and both LA and its di-HOME products reflected disease severity in COVID-19. In healthy marines, these lipids rose with seroconversion. Eicosanoids linked variably to the peripheral cellular immune response. PGE2, TxA2 and LTE4 correlated with T cell activation, as did PGD2 with non-B non-T cell activation. In COVID-19, LPS stimulated peripheral blood mononuclear cell PGF2α correlated with memory T cells, dendritic and NK cells while LA and DiHOMEs correlated with exhausted T cells. Three high abundance lipids - ChoE 18:3, LPC-O-16:0 and PC-O-30:0 - were altered specifically in COVID. LPC-O-16:0 was strongly correlated with T helper follicular cell activation and all three negatively correlated with multi-omic inflammatory pathways and disease severity. CONCLUSIONS: A broad based lipidomic storm is a predictor of poor prognosis in ARDS. Alterations in sPLA2, PGD2 and 12-HETE and the high abundance lipids, ChoE 18:3, LPC-O-16:0 and PC-O-30:0 exhibit relative specificity for COVID-19 amongst such patients and correlate with the inflammatory response to link to disease severity.


Subject(s)
COVID-19 , Phospholipases A2, Secretory , Sepsis , Humans , SARS-CoV-2 , 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid , Lipidomics , Leukocytes, Mononuclear , Leukotriene E4 , Prostaglandin D2 , Cyclooxygenase 2 , Eicosanoids
19.
Glomerular Dis ; 3(1): 258-265, 2023.
Article in English | MEDLINE | ID: mdl-38033715

ABSTRACT

Background: Kidney diseases pose a significant global health burden; there is an urgent need to deepen our understanding of their underlying mechanisms. Summary: This review focuses on new innovative approaches that merge genome-wide association studies (GWAS) and single-cell omics (including transcriptomics) in kidney disease research. We begin by detailing how GWAS has identified numerous genetic risk factors, offering valuable insight into disease susceptibility. Then, we explore the application of scRNA-seq, highlighting its ability to unravel how genetic variants influence cellular phenotypes. Through a synthesis of recent studies, we illuminate the synergy between these two powerful methodologies, demonstrating their potential in elucidating the complex etiology of kidney diseases. Moreover, we discuss how this integrative approach could pave the way for precise diagnostics and personalized treatments. Key Message: This review underscores the transformative potential of combining GWAS and scRNA-seq in the journey toward a deeper understanding of kidney diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...