Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 242: 36-44, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28427816

ABSTRACT

In the present study, arecanut husk, an agro-processing waste of areca plam industry highly prevalent in the north-eastern region of India, was investigated for its suitability as a prospective bioenergy feedstock for thermo-chemical conversion. Pretreatment of areca husk using torrefaction was performed in a fixed bed reactor with varying reaction temperature (200, 225, 250 and 275°C). The torrefied areca husk was subsequently pyrolyzed from temperature range of 300-600°C with heating rate of 40°C/min to obtain biooil and biochar. The torrefied areca husk, pyrolysis products were characterized by using different techniques. The energy and mass yield of torrefied biomass were found to be decreased with an increase in the torrefaction temperature. Further, biochar were found to be effective in removal of As (V) from aqueous solutions but efficiency of removal was better in case of torrefied biochar. Chemical composition of bio-oil is also influenced by torrefaction process.


Subject(s)
Agriculture , Refuse Disposal , Biomass , Heating , India , Prospective Studies , Temperature
2.
Bioresour Technol ; 213: 111-120, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26927236

ABSTRACT

Lipid-rich biomass, generally opted for biodiesel production, produces a substantial amount of by-product (de-oiled cake and seed cover) during the process. Complete utilization of Cascabela thevetia seeds for biofuel production through both chemical and thermochemical conversion route is investigated in the present study. Various properties of biodiesel produced was characterized and compared with those obtained from similar oil seeds. The by-products of the chemical process were used as a feedstock for pyrolysis at different temperatures in a fixed bed reactor. Maximum bio-oil yields of 29.11% and 26.18% were observed at 500°C. The bio-oil obtained at optimum yield was characterized by CHN analyzer, NMR and FTIR spectroscopy. The biochar produced was further characterized by SEM-EDX, XRD and FTIR along with elemental analysis to explore its utilization for various purposes. The present investigation depicts a new approach towards complete utilization of lipid-rich bio-resources to different types of biofuels and biochar.


Subject(s)
Apocynaceae/chemistry , Biofuels , Biotechnology/methods , Oils/chemistry , Seeds/chemistry , Acids/chemistry , Biofuels/analysis , Biomass , Charcoal/chemistry , Esters/analysis , Oxidation-Reduction , Proton Magnetic Resonance Spectroscopy , Spectroscopy, Fourier Transform Infrared , Temperature , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...