Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
Add more filters










Publication year range
1.
Arch Pharm (Weinheim) ; : e2400194, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877616

ABSTRACT

Tanacetum nitens ( Boiss. & Noë)  Grierson is an aromatic perennial herb used in Turkish traditional medicine to treat headache, fever, and skin diseases. This study aimed to investigate the chemical composition, antioxidant, enzyme inhibition, and cytotoxic properties of T. nitens aerial parts. Organic solvent extracts were prepared by sequential maceration in hexane, dichloromethane, ethyl acetate, and methanol while aqueous extracts were obtained by maceration or infusion. Nuclear magnetic resonance (NMR) and LC-DAD-MS analysis allowed the identification and quantification of different phytoconstituents including parthenolide, tanacetol B, tatridin B, quinic acid derivatives, ß-sitosterol, and glycoside derivatives of quercetin and luteolin. The type and amount of these phytochemicals recovered by each solvent were variable and significant enough to impact the biological activities of the plant. Methanolic and aqueous extracts displayed the highest scavenging and ions-reducing properties while the dichloromethane and ethyl acetate extracts exerted the best total antioxidant activity and metal chelating power. Results of enzyme inhibition activity showed that the hexane, ethyl acetate, and dichloromethane extracts had comparable anti-acetylcholinesterase activity and the latter extract revealed the highest anti-butyrylcholinesterase activity. The best α-amylase and α-glucosidase inhibition activities were obtained from the hexane extract. The dichloromethane and ethyl acetate extracts exhibited the highest cytotoxic effect against the prostate carcinoma DU-145 cells. In conclusion, these findings indicated that T. nitens can be a promising source of biomolecules with potential therapeutic applications.

2.
Biomolecules ; 14(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38927041

ABSTRACT

The genus Brassica is an important source of food in the Mediterranean diet with documented nutritional and medicinal properties. However, few studies have investigated the phytochemical composition and the biological activity of wild Sicilian taxa. Thus, we aimed to study the chemical profile and the antioxidant potential, in vitro and in LPS-stimulated RAW 264.7 cells, of a methanolic extract of leaves of wild Brassica macrocarpa Guss (B. macrocarpa) (Egadi Islands; Sicily-Italy). B. macrocarpa methanolic extract showed a large amount of glucosinolates and different phenolic compounds. It exhibited antioxidant activity in the DPPH assay and in LPS-stimulated RAW 264.7 cells, being able to reduce NO and ROS levels and NOS2 mRNA expression. Our study demonstrated that Sicilian B. macrocarpa methanolic extract, in LPS-stimulated macrophages, efficiently counteracts oxidative stress and displays radical scavenging activity. Future studies are required to identify the contribution of the single phytocomponents, to characterize the action mechanism, and to reveal possible applications in human health.


Subject(s)
Antioxidants , Brassica , Free Radical Scavengers , Plant Extracts , Plant Leaves , RAW 264.7 Cells , Plant Extracts/pharmacology , Plant Extracts/chemistry , Mice , Plant Leaves/chemistry , Animals , Free Radical Scavengers/pharmacology , Free Radical Scavengers/chemistry , Brassica/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Nitric Oxide/metabolism , Macrophages/drug effects , Macrophages/metabolism , Reactive Oxygen Species/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Lipopolysaccharides/pharmacology , Oxidative Stress/drug effects , Phenols/pharmacology , Phenols/chemistry , Sicily , Glucosinolates/pharmacology , Glucosinolates/chemistry
3.
Food Res Int ; 188: 114502, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823845

ABSTRACT

Lycium barbarum L. berries have a remarkable chemical composition and extensive biological activities, being a valuable component of health and nutraceutical practices. Nevertheless, a deep insight on the intestinal permeation of the pro-healthy bioactive compounds is urgently needed to predict the real effects on human body. This study attempted, for the first time, to optimize the Ultrasound-Assisted Extraction (UAE) of goji berries using a Response Surface Methodology approach and establish the intestinal permeation of the principal pro-healthy compounds. The optimal extraction conditions were a solid:liquid ratio of 8.75 % for 56.21 min, using an intensity of 59.05 W/m2. The optimal extract displayed a remarkable antioxidant capacity, with LC/DAD-ESI-MS analysis unveiled a diverse phytochemical profile, encompassing different compounds (e.g. glu-lycibarbarspermidine F, 2-glu-kukoamine, rutin, 3,5-dicaffeoylquinic acid). The intestinal co-culture model demonstrated that glu-lycibarbarspermidine F (isomer 2) (73.70 %), 3,5-dicaffeoylquinic acid (52.66 %), and isorhamnetin-3-O-rutinoside (49.31 %) traversed the intestinal cell layer, exerting beneficial health-promoting effects.


Subject(s)
Antioxidants , Fruit , Lycium , Plant Extracts , Lycium/chemistry , Fruit/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Humans , Permeability , Ultrasonic Waves , Phytochemicals/isolation & purification , Intestinal Mucosa/metabolism , Caco-2 Cells , Intestinal Absorption , Rutin/isolation & purification , Ultrasonics/methods , Intestinal Barrier Function
4.
J Sci Food Agric ; 104(5): 2820-2831, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38009330

ABSTRACT

BACKGROUND: Parkia biglobosa stem bark extracts were prepared using methanol, methanol 80%, water and ethyl acetate to investigate their phytochemical contents, as well as antioxidant and enzyme inhibitory properties. RESULTS: Liquid chromatography (LC) quadrupole time-of-flight mass spectrometry (MS) and LC-MSn revealed the presence of flavonoids, hydroxycinnamic acid derivatives and gallotannins. Particularly, the water extract contained rutin (480 µg per 100 mg) and 3-caffeoylquinic acid (1109 µg per 100 mg) in higher amounts, whereas the 80% methanol extract contains methoxyluteolin-7-O-rutinoside and catechin derivatives as major compounds. Total phenolic and flavonoid contents of the extracts were yielded in the range of 32.26-119.88 mg gallic acid equivalents g-1 and 0.60-2.39 mg rutin equivalents g-1 , respectively. Total antioxidant capacity was also displayed in the range of 0.53-6.34 mmol Trolox equivalents (TE) g-1 . Both the methanolic extracts showed higher total antioxidant capacity that could be related to the total phenolic contents. Radical scavenging capacity in DPPH (2,2-diphenyl-2-picryl-hydrazyl) (37.21-508.30 mg TE g-1 ) and ABTS [2,2-azinobis(3-ethylbenzothiazoline- 6-sulfonic acid)] (60.95-1068.06 mg TE g-1 ) assays, reducing power in cupric ion reducing antioxidant capacity (54.23-1002.78 mg TE g-1 ) and ferric ion reducing antioxidant power (33.18-558.68 mg TE g-1 ) assays, as well as metal chelating activity (2.45-11.28 mg EDTA equivalents g-1 ), were exhibited by all extracts. All extracts were found to inhibit acetylcholinesterase [0.23-2.47 mg galanthamine equivalents (GALAE) g-1 ], tyrosinase [27.20-83.33 mg kojic acid equivalents g-1 ], amylase [mmol acarbose equivalents (ACAE) g-1 ]. On the other hand, all extracts, except the water extract, inhibited butyrylcholinesterase (5.38-6.56 mg GALAE g-1 ), whereas only the water and ethyl acetate extract showed glucosidase inhibitory potential (1.96 and 1.82 mmol ACAE g-1 ). In general, the water extract was found to be a weaker enzyme inhibitor suggesting that water is not the preferrable extraction solvent to obtain active products. CONCLUSION: The present study demonstrated that the stem bark extracts of P. biglobosa contains good amount of phytochemical and extracts present significant antioxidant, as well as reasonable enzyme inhibitory effects. Hence, these findings suggest that further studies can be performed on more specific biological targets and models of bioactivity to determine their safe usage as a nutraceutical or for the preparation functional foods. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Acetates , Antioxidants , Plant Extracts , Antioxidants/chemistry , Plant Extracts/chemistry , Butyrylcholinesterase , Methanol/analysis , Acetylcholinesterase , Plant Bark/chemistry , Phenols/chemistry , Flavonoids/analysis , Phytochemicals/pharmacology , Phytochemicals/analysis , Rutin/analysis , Dietary Supplements/analysis , Water/analysis , Health Promotion
5.
Schizophr Res ; 264: 71-80, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38101180

ABSTRACT

Two cardinal elements in the complex and multifaceted pathophysiology of schizophrenia (SCZ) are neuroinflammation and dysregulation of glutamatergic neurotransmission, with the latter being especially involved in treatment-resistant schizophrenia (TRS). Interestingly, the Kynurenine (KYN) pathway (KP) is at the crossroad between them, constituting a potential causal link and a therapeutic target. Although there is preclinical and clinical evidence indicating a dysregulation of KP associated with the clinical phenotype of SCZ, clinical studies investigating the possible relationship between changes in biomarkers of the KP and response to pharmacotherapy are still limited. Therefore, we have studied possible differences in the circulating levels of biomarkers of the metabolism of tryptophan along the KP in 43 responders to first-line treatments (FLR) and 32 TRS patients treated with clozapine, and their possible associations with psychopathology in the two subgroups. Plasma levels of KYN were significantly higher in TRS patients than in FLR patients, indicating a greater activation of KP. Furthermore, the levels of quinolinic (NMDA receptor agonist) and kynurenic acid (NMDA negative allosteric modulator) showed a negative and a positive correlation with several dimensions and the overall symptomatology in the whole sample and in FLR, but not in TRS, suggesting a putative modulating effect of clozapine elicited through the NMDA receptors. Despite the cross-sectional design of the study that prevents us from demonstrating causation, these findings show a significant relationship among circulating KP biomarkers, psychopathology, and response to pharmacotherapy in SCZ. Therefore, plasma KP biomarkers should be further investigated for developing personalized medicine approaches in SCZ.


Subject(s)
Clozapine , Schizophrenia , Humans , Kynurenine/metabolism , Schizophrenia, Treatment-Resistant , Schizophrenia/drug therapy , Clozapine/therapeutic use , Cross-Sectional Studies , Biomarkers , Kynurenic Acid , Quinolinic Acid
6.
Nat Prod Res ; 38(1): 140-145, 2024.
Article in English | MEDLINE | ID: mdl-35895051

ABSTRACT

Clinopodium candidissimum (Munby) Kuntze (Lamiaceae) is used in traditional medicine and as a food condiment in Algeria, where it is known as Zaater cheleuh and Nabta elbida. Here, we report the comprehensive characterisation of non-volatile polar constituents extracted from C. candidissimum aerial parts (a mixture of inflorescences, stems and leaves), and their aroma profile. Qualitative 1H-NMR and quali-quantitative HPLC-MSn analyses of fractions obtained with solvents at different polarity revealed the presence of aglyconic and glycosylated flavonoids (3.1%), phenylpropanoids (3.6%), gallic acid derivatives (0.76%), and triterpenoids (0.62%), among the others. On the other hand, HS-SPME-GC-MS allowed to identify 38 volatile constituents, among which the oxygenated monoterpenes pulegone (44.8%), piperitenone (6.6%), isopulegone (5.8%) and neo-menthol (3.8%), and the sesquiterpene hydrocarbons germacrene D (16.2%) and bicyclogermacrene (3.0%) were the most abundant. Overall, results indicate that C. candidissimum represents an endemic natural source of antioxidants and bioactive compounds, and they will be useful for further studies on this species.


Subject(s)
Lamiaceae , Solid Phase Microextraction , Gas Chromatography-Mass Spectrometry , Solid Phase Microextraction/methods , Chromatography, High Pressure Liquid , Algeria , Phytochemicals/analysis , Lamiaceae/chemistry
7.
Pharmacol Res ; 198: 106993, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37972722

ABSTRACT

The treatment of bipolar disorder (BD) still remains a challenge. Melatonin (MLT), acting through its two receptors MT1 and MT2, plays a key role in regulating circadian rhythms which are dysfunctional in BD. Using a translational approach, we examined the implication and potential of MT1 receptors in the pathophysiology and psychopharmacology of BD. We employed a murine model of the manic phase of BD (Clock mutant (ClockΔ19) mice) to study the activation of MT1 receptors by UCM871, a selective partial agonist, in behavioral pharmacology tests and in-vivo electrophysiology. We then performed a high-resolution Nuclear Magnetic Resonance study on isolated membranes to characterize the molecular mechanism of interaction of UCM871. Finally, in a cohort of BD patients, we investigated the link between clinical measures of BD and genetic variants located in the MT1 receptor and CLOCK genes. We demonstrated that: 1) UCM871 can revert behavioral and electrophysiological abnormalities of ClockΔ19 mice; 2) UCM871 promotes the activation state of MT1 receptors; 3) there is a significant association between the number of severe manic episodes and MLT levels, depending on the genetic configuration of the MT1 rs2165666 variant. Overall, this work lends support to the potentiality of MT1 receptors as target for the treatment of BD.


Subject(s)
Bipolar Disorder , Melatonin , Psychopharmacology , Humans , Mice , Animals , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Melatonin/therapeutic use , Melatonin/pharmacology , Receptor, Melatonin, MT1/genetics , Receptor, Melatonin, MT2/genetics , Receptor, Melatonin, MT2/agonists
8.
Chem Biodivers ; 20(12): e202301209, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37962402

ABSTRACT

Genus Corydalis is a rich source of isoquinoline alkaloids reported to having potential bioactivities. Corydalis chaerophylla collected from Nepal at an altitude of 2400-4800 m was extracted using hexane, methanol and chloroform as solvents. The resulting hexane, methanol and chloroform extracts were subjected to LC-DAD-MSn analysis to yield fifteen different alkaloids. To assess any potential pharmacological properties, antimicrobial activity against two Gram-positive, two Gram-negative bacterial strains and one fungal strain was assessed, revealing significant inhibitive action of the methanol and chloroform extracts. Of the extracts obtained using chloroform contained the highest content of phenolic compounds at 113 mg GAE/g, while the highest total flavonoid content was found for the hexane extract with a value of 46.45 mg QE/g. The chloroform extract also exhibited a considerable antioxidant activity at IC50 value, 261.5±3 µg/mL, for the DPPH assay. Conversely, the methanol extract exhibited the highest LC50 value for Brine Shrimp cytotoxicity at 196±3 µg/mL being least potential for the test. The methanol extract was found to be the most active against α-amylase inhibition with an IC50 of 51.52±2 µg/mL. In an in vivo acute oral toxicity study against mice, methanol and chloroform extracts presented harmful effects with 1000.36 mg/kg BW and 515 mg/kg BW for LD50 , respectively. By analyzing all the results of the solvents used, the chloroform extract was found to be the most active, a feature that will be used in future isolation procedures and other pharmacological tests.


Subject(s)
Alkaloids , Corydalis , Animals , Mice , Plant Extracts/chemistry , Hexanes , Methanol , Chloroform , Antioxidants/chemistry , Gram-Negative Bacteria , Solvents
9.
Phytother Res ; 37(12): 5883-5896, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37926430

ABSTRACT

There is a large demand for nutraceuticals in the market and studies related to their action are needed. In this paper, the antimicrobial activity and the immunomodulatory effect of a nutraceutical formulation containing 14.39% of ascorbic acid, 7.17% of coenzyme Q10, 1.33% of Echinacea polyphenols, 0.99% of pine flavan-3-ols, 0.69% of resveratrol and 0.023% of Echinacea alkylamides were studied using in vitro assays and cell-based metabolomics. Chromatographic analysis allowed us to study the nutraceutical composition. The antibacterial activity was evaluated on S. aureus, K. pneumoniae, P. aeruginosa, E. coli, H. influenzae, S. pyogenes, S. pneumoniae and M. catarrhalis. The immunomodulatory activity was assessed on human macrophages and dendritic cells. The production of IL-1ß, IL-12p70, IL-10 and IL-8 was evaluated on culture medium by ELISA and the activation/maturation of dendritic cells with cytofluorimetric analysis. Treated and untreated macrophages and dendritic cell lysates were analysed by liquid chromatography coupled with high-resolution mass spectrometry, and results were compared using multivariate data analysis to identify biological markers related to the treatment with the food supplement. The food supplement decreased K. pneumoniae, P. aeruginosa, E. coli, Methicillin-resistant Staphylococcus aureus (MRSA) and M. catharralis growth, reduced the inflammatory response in macrophages exposed to lipopolysaccharide (LPS) and modulated the activation and maturation of the dendritic cells. Oxidized phospholipids were identified as the main biological markers of treated cell lysates, compared with controls.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Respiratory Tract Infections , Humans , Staphylococcus aureus , Bacteria , Escherichia coli , Streptococcus pneumoniae , Klebsiella pneumoniae , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Immune System , Biomarkers , Microbial Sensitivity Tests
10.
Meat Sci ; 206: 109338, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37783025

ABSTRACT

In this paper, the effects of four cooking procedures were evaluated, two occurring in atmospheric (in ventilated and steam oven) and two in subatmospheric (vacuum and sous vide cooking) conditions on pork Longissimus lumborum. The main objective of the study was to compare and evaluate the physical and chemical characteristics. Samples were cooked in four independent trials namely Oven (O), Steaming (ST), Vacuum Cooking (VC) and Sous Vide (SV). The analyses included temperature, cooking effect, percentage weight loss, texture (cutting and double compression tests), colour (superficially and inside the sample), microstructure (optical microscopy) and fibres shortening analysis. To assess cooking effects on significant nutritional constituents, the fatty acid composition and the content of B vitamins were analysed. Volatile profiles of samples were also compared using solid-phase microextraction. SV cooking resulted in the less favourable meat texture, presenting the highest hardness and chewiness. Moreover, high hardness values measured on SV samples is also related to the high weight loss. The technique of oven cooking (O) demonstrated superior results in terms of mechanical properties, which are closely associated with the cooking values. Specifically, the cook value C0 was significantly higher in the case of oven cooking compared to SV, VC, and ST. Mild temperature conditions and cooking times of the four considered cooking techniques did not induce significant variations in the fatty acid composition and volatile profile. Conversely, SV and VC allowed the highest amount of vitamin B retention in cooked meat. This work suggests that some differences emerged on the effects due to sub-atmospheric and atmospheric cooking compared to traditional ones.


Subject(s)
Pork Meat , Red Meat , Animals , Swine , Cooking/methods , Steam , Fatty Acids , Weight Loss
11.
Arch Pharm (Weinheim) ; 356(12): e2300444, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37754205

ABSTRACT

The chemical composition as well as antioxidant, antiproliferative, and enzyme inhibition activities of extracts from aerial parts of Thymus leucostomus H ausskn. & V elen. obtained with hexane, methanol, and water were evaluated. Results showed that the methanol extract had significantly (p < 0.05) the highest total phenolic content (TPC; 107.80 mg GAE/g) and total flavonoids content (TFC; 25.21 mg RE/g) followed by the aqueous extract (102.72 mg GAE/g and 20.88 mg RE/g, respectively). LC-MS/MS-guided profiling of the three extracts revealed that rosmarinic acid (34.8%), hesperetin (42.9%), and linoleic acid (18%) were the dominant compounds in the methanol, aqueous and hexane extracts, respectively. GC-MS analysis of the hexane extract showed that É£-sitosterol (29.9%) was the major constituent. The methanol extract displayed significantly (p < 0.05) the highest Cu++ , Fe+++ , and Mo(VI) ions scavenging and reducing properties while the aqueous extract exerted significantly (p < 0.05) the highest metal chelating power (42.51 mg EDTAE/g). Both the hexane and methanol extracts effectively inhibited the acetylcholinesterase enzyme (2.63 and 2.65 mg GALAE/g, respectively) while the former extract exerted significantly (p < 0.05) the highest butyrylcholinesterase (2.32 mg GALAE/g), tyrosinase (19.73 mg KAE/g), and amylase (1.16 mmol ACAE/g) inhibition capacity. The aqueous extract exhibited the best glucosidase inhibition property (0.49 mmol ACAE/g). The methanol and hexane extracts exerted a higher cytotoxic effect on HT-29 (IC50 : 8.12 µg/mL) and HeLa (IC50 = 8.08 µg/mL) cells, respectively. In conclusion, these results provide valuable insight into the potential use of T. leucostomus bioactive extracts in different pharmaceutical applications.


Subject(s)
Antioxidants , Hexanes , Antioxidants/pharmacology , Antioxidants/chemistry , Chromatography, Liquid , Gas Chromatography-Mass Spectrometry , Hexanes/analysis , Methanol/analysis , Butyrylcholinesterase , Acetylcholinesterase , Tandem Mass Spectrometry , Plant Extracts/chemistry , Structure-Activity Relationship
12.
Antioxidants (Basel) ; 12(8)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37627491

ABSTRACT

Actinidia arguta leaves have gained notoriety over the past years due to their rich bioactive composition with human pro-healthy effects, particularly in relation to antioxidants. Nevertheless, antioxidants are well known for their chemical instability, making it necessary to develop suitable delivery systems, such as microparticles, to provide protection and ensure a controlled release. The aim of this work was to produce polymeric particles of A. arguta leaves extract by spray-drying that may improve the oral mucositis condition. Microparticles were characterized by size, shape, antioxidant/antiradical activities, swelling capacity, moisture content, and effect on oral cells (TR146 and HSC-3) viability, with the aim to assess their potential application in this oral condition. The results attested the microparticles' spherical morphology and production yields of 41.43% and 36.40%, respectively, for empty and A. arguta leaves extract microparticles. The A. arguta leaves extract microparticles obtained the highest phenolic content (19.29 mg GAE/g) and antioxidant/antiradical activities (FRAP = 81.72 µmol FSE/g; DPPH = 4.90 mg TE/g), being perceived as an increase in moisture content and swelling capacity. No differences were observed between empty and loaded microparticles through FTIR analysis. Furthermore, the exposure to HSC-3 and TR146 did not lead to a viability decrease, attesting their safety for oral administration. Overall, these results highlight the significant potential of A. arguta leaves extract microparticles for applications in the pharmaceutical and nutraceutical industries.

13.
Antioxidants (Basel) ; 12(7)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37507953

ABSTRACT

Chestnut shells (CSs) are an appealing source of bioactive molecules, and constitute a popular research topic. This study explores the effects of in vitro gastrointestinal digestion and intestinal permeability on the bioaccessibility and bioactivity of polyphenols from CS extract prepared by subcritical water extraction (SWE). The results unveiled higher phenolic concentrations retained after gastric and intestinal digestion. The bioaccessibility and antioxidant/antiradical properties were enhanced in the following order: oral < gastric ≤ intestinal digests, attaining 40% of the maximum bioaccessibility. Ellagic acid was the main polyphenol in the digested and undigested extract, while pyrogallol-protocatechuic acid derivative was only quantified in the digests. The CS extract revealed potential mild hypoglycemic (<25%) and neuroprotective (<75%) properties before and after in vitro digestion, along with upmodulating the antioxidant enzymes' activities and downregulating the lipid peroxidation. The intestinal permeation of ellagic acid achieved 22.89% after 240 min. This study highlighted the efficacy of the CS extract on the delivery of polyphenols, sustaining its promising use as nutraceutical ingredient.

14.
Mar Drugs ; 21(5)2023 May 04.
Article in English | MEDLINE | ID: mdl-37233482

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the main aggressive types of cancer, characterized by late prognosis and drug resistance. Among the main factors sustaining PDAC progression, the alteration of cell metabolism has emerged to have a key role in PDAC cell proliferation, invasion, and resistance to standard chemotherapeutic agents. Taking into account all these factors and the urgency in evaluating novel options to treat PDAC, in the present work we reported the synthesis of a new series of indolyl-7-azaindolyl triazine compounds inspired by marine bis-indolyl alkaloids. We first assessed the ability of the new triazine compounds to inhibit the enzymatic activity of pyruvate dehydrogenase kinases (PDKs). The results showed that most of derivatives totally inhibit PDK1 and PDK4. Molecular docking analysis was executed to predict the possible binding mode of these derivatives using ligand-based homology modeling technique. Evaluation of the capability of new triazines to inhibit the cell growth in 2D and 3D KRAS-wild-type (BxPC-3) and KRAS-mutant (PSN-1) PDAC cell line, was carried out. The results showed the capacity of the new derivatives to reduce cell growth with a major selectivity against KRAS-mutant PDAC PSN-1 on both cell models. These data demonstrated that the new triazine derivatives target PDK1 enzymatic activity and exhibit cytotoxic effects on 2D and 3D PDAC cell models, thus encouraging further structure manipulation for analogs development against PDAC.


Subject(s)
Adenocarcinoma , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Molecular Docking Simulation , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/pharmacology , Proto-Oncogene Proteins p21(ras)/therapeutic use , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/drug therapy , Pancreatic Neoplasms/pathology , Triazines/pharmacology , Cell Proliferation , Adenocarcinoma/metabolism , Pancreatic Neoplasms
15.
Brain Sci ; 13(4)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37190658

ABSTRACT

Background and Objectives: Alterations in hot cognition and in the tryptophan metabolism through serotonin (5-HT) and kynurenine (KYN) pathways have been associated with an increased risk of suicidal behavior. Here, we aim at probing the association between Stroop test performances and tryptophan pathway components in a sample of individuals with bipolar disorder (BD). Materials and Methods: We explored the association between the Emotion Inhibition Subtask (EIS) performances of the Brief Assessment of Cognition for Affective Disorders (BAC-A) and plasmatic levels of 5-hydroxytriptophan (5-HTP), 5-HT, KYN, 3-hydroxykynurenine (3-HK), quinolinic acid (QA), and kynurenic acid (KYNA) among subjects reporting lifetime suicide ideation (LSI) vs. non-LSI and subjects reporting lifetime suicide attempts (LSA) vs. non-LSA. Results: In a sample of 45 subjects with BD, we found a statistically significant different performance for LSA vs. non-LSA in the color naming (CN) and neutral words (NW) EIS subtasks. There was a significant association between CN performances and plasma 5-HTP levels among LSI and LSA subjects but not among non-LSI or non-LSA. Conclusions: In our sample, patients with LSA and LSI presented lower performances on some EIS subtasks compared to non-LSA and non-LSI. Moreover, we found an inverse correlation between plasma 5-HTP concentration and some EIS performances in LSA and LSI but not among non-LSA or non-LSI. This may represent an interesting avenue for future studies probing this complex association.

16.
Molecules ; 28(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37241726

ABSTRACT

P. maritimum L., belonging to the Amaryllidaceae family, is a species that grows on beaches and coastal sand dunes mainly on both sides of the Mediterranean Sea and Black Sea, the Middle East, and up to the Caucasus region. It has been largely investigated due to its several interesting biological properties. With the aim of providing new insights into the phytochemistry and pharmacology of this species, the ethanolic extract of the bulbs from a local accession, not previously studied, growing in Sicily (Italy), was investigated. This chemical analysis, performed by mono- and bi-dimensional NMR spectroscopy, as well as LC-DAD-MSn, allowed to identify several alkaloids, three of which were never detected in the genus Pancratium. Furthermore, the cytotoxicity of the preparation was assessed in differentiated human Caco-2 intestinal cells by trypan blue exclusion assay, and its antioxidant potential was evaluated using the DCFH-DA radical scavenging method. The results obtained demonstrate that P. maritimum bulbs' extract exerts no cytotoxic effect and is able to remove free radicals at all the concentrations tested.


Subject(s)
Amaryllidaceae , Antineoplastic Agents , Humans , Antioxidants/pharmacology , Sicily , Caco-2 Cells , Plant Extracts/pharmacology
17.
Plants (Basel) ; 12(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36771732

ABSTRACT

The members of the genus Hypericum have great potential to develop functional uses in nutraceutical and pharmaceutical applications. With this in mind, we aimed to determine the chemical profiling and biological properties of different extracts (ethyl acetate, methanol and water) from two Hypericum species (H. montbretii and H. origanifolium). We combined two approaches (LC-DAD-MS and LC-NMR) to identify and quantify chemical compounds of the extracts. Antioxidant properties (free radical quenching, reducing power and metal chelating) and enzyme inhibitory effects (cholinesterase, tyrosinase, amylase and glucosidase) were determined as biological properties. The tested extracts were rich in caffeic acid derivatives and flavonoids, and among them, 3-caffeoyl quinic acid and myricetin-3-O-rhamnoside were found to be the main compounds. The total phenolic and flavonoid levels were determined to be 50.97-134.99 mg GAE/g and 9.87-82.63 mg RE/g, respectively. With the exception of metal chelating, the methanol and water extracts showed stronger antioxidant properties than the ethyl acetate extracts. However, different results were obtained for each enzyme inhibition assay, and in general, the ethyl acetate extracts present more enzyme-inhibiting properties than the water or methanol extracts. Results from chemical and biological analyses were combined using multivariate analysis, which allowed establishing relationships between composition and observed effects of the Hypericum extracts based on the extraction solvents. To gain more insights between chemical compounds and enzyme-inhibiting effects, we performed molecular docking analysis. We observed favorable interactions between certain compounds and the tested enzymes during our analysis, confirming the data obtained from the multivariate approach. In conclusion, the obtained results may shed light on the road from natural sources to functional applications, and the tested Hypericum species may be considered potential raw materials, with promising chemical constituents and biological activities.

18.
Antioxidants (Basel) ; 12(1)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36671049

ABSTRACT

Ravenala madagascariensis is a widely known ornamental and medicinal plant, but with a dearth of scientific investigations regarding its phytochemical and pharmacological properties. Hence, these properties were appraised in this study. The DPPH (154.08 ± 2.43 mgTE/g), FRAP (249.40 ± 3.01 mgTE/g), CUPRAC (384.57 ± 1.99 mgTE/g), metal chelating (29.68 ± 0.74 mgEDTAE/g) and phosphomolybdenum assay (2.38 ± 0.07 mmolTE/g) results demonstrated that the aqueous extract had the most prominent antioxidant activity, while the methanolic extract displayed the best antioxidant potential in the ABTS assay (438.46 ± 1.69 mgTE/g). The HPLC-ESI-Q-TOF-MS-MS analysis allowed the characterization of 41 metabolites. The methanolic extract was the most active against acetylcholinesterase. All extracts were active against the alpha-amylase and alpha-glucosidase enzymes, with the ethyl acetate extract being the most active against the alpha-amylase enzyme, while the methanolic extract showed the best alpha-glucosidase inhibition. A plethora of metabolites bonded more energetically with the assayed enzymes active sites based on the results of the in silico studies. R. madagascariensis extracts used in this study exhibited cytotoxicity against HT29 cells. The IC50 of the methanolic extract was lower (506.99 ug/mL). Based on the heat map, whereby flavonoids were found to be in greater proportion in the extracts, it can be concluded that the flavonoid portion of the extracts contributed to the most activity.

19.
Int J Mol Sci ; 25(1)2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38203468

ABSTRACT

Reduced sperm motility and/or count are among the major causes of reduced fertility in men, and sperm membranes play an important role in the spermatogenesis and fertilization processes. However, the impact of sperm lipid composition on male fertility remains under-investigated. The aim of the present study was to perform a lipidomic analysis of human sperm membranes: we performed an untargeted analysis of membrane lipid composition in fertile (N = 33) and infertile subjects (N = 29). In parallel, we evaluated their serum lipid levels. Twenty-one lipids were identified by their mass/charge ratio and post-source decay spectra. Sulfogalactosylglycerolipid (SGG, seminolipid) was the most abundant lipid component in the membranes. In addition, we observed a significant proportion of PUFAs. Important differences have emerged between the fertile and infertile groups, leading to the identification of a lipid cluster that was associated with semen parameters. Among these, cholesterol sulfate, SGG, and PUFAs represented the most important predictors of semen quality. No association was found between the serum and sperm lipids. Dietary PUFAs and SGG have acknowledged antioxidant functions and could, therefore, represent sensitive markers of sperm quality and testicular function. Altogether, these results underline the important role of sperm membrane lipids, which act independently of serum lipids levels and may rather represent an independent marker of reproductive function.


Subject(s)
Asthenozoospermia , Semen Analysis , Humans , Male , Semen , Lipidomics , Sperm Motility , Spermatozoa , Membrane Lipids , Cluster Analysis
20.
Food Res Int ; 162(Pt A): 111992, 2022 12.
Article in English | MEDLINE | ID: mdl-36461231

ABSTRACT

Asparagus officinalis is largely consumed as food in many parts of the world, and due to its content in secondary metabolites can be considered as a vegetable with health-promoting value. Part of its organoleptic qualities can be ascribed to the presence of sulfur-containing compounds, nevertheless qualitative data about the volatile and non-volatile pools of these compounds in green and white spears of asparagus are poorly investigated. Due to the wide alimentary use of this crop and the potential biological properties of S-containing compounds, research aimed at filling this gap is required. In this paper, a comprehensive characterization of S-metabolites in asparagus performed by LC-MS and GC-MS is reported. Both green and white varieties of asparagus were considered. The fresh vegetal material was subjected to different sample preparation procedures, such as solvent extraction, distillation, and headspace sampling. Furthermore, a derivatization protocol with 4,4'-dithiodipyridine was used for low-molecular weight thiols, and both derivatized and underivatized compounds were analysed by LC-MS. The methods allowed to identify 80 S-containing metabolites in asparagus samples, and to assess the distribution of these compounds in different parts of the spears. Results were discussed comparing the literature, and the identified compounds were considered to explain some peculiar taste and odorous properties of green and white asparagus, although further research is required to confirm our hypotheses. Overall, in this work we report for the first time an exhaustive characterization of S-compounds profile in spears of green and white Asparagus varieties. Furthermore, results indicate that multiple approaches should be used to study the S-containing metabolites of this plant, due to their diverse chemical properties.


Subject(s)
Asparagus Plant , Chromatography, Liquid , Gas Chromatography-Mass Spectrometry , Sulfur Compounds , Tandem Mass Spectrometry , Vegetables , Sulfur
SELECTION OF CITATIONS
SEARCH DETAIL
...