Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Publication year range
1.
Front Aging Neurosci ; 8: 299, 2016.
Article in English | MEDLINE | ID: mdl-28018212

ABSTRACT

Mitochondria are highly dynamic organelles that in response to the cell's bio-energetic state continuously undergo structural remodeling fission and fusion processes. This mitochondrial dynamic activity has been implicated in cell cycle, autophagy, and age-related diseases. Adult tissue-derived mesenchymal stromal/stem cells present a therapeutic potential. However, to obtain an adequate mesenchymal stromal/stem cell number for clinical use, extensive in vitro expansion is required. Unfortunately, these cells undergo replicative senescence rapidly by mechanisms that are not well understood. Senescence has been associated with metabolic changes in the oxidative state of the cell, a process that has been also linked to mitochondrial fission and fusion events, suggesting an association between mitochondrial dynamics and senescence. In the present work, we studied the mitochondrial structural remodeling process of mesenchymal stromal/stem cells isolated from adipose tissue in vitro to determine if mitochondrial phenotypic changes were associated with mesenchymal stromal/stem cell senescence. For this purpose, mitochondrial dynamics and oxidative state of stromal/stem cell were compared between young and old cells. With increased cell passage, we observed a significant change in cell morphology that was associated with an increase in ß-galactosidase activity. In addition, old cells (population doubling seven) also showed increased mitochondrial mass, augmented superoxide production, and decreased mitochondrial membrane potential. These changes in morphology were related to slightly levels increases in mitochondrial fusion proteins, Mitofusion 1 (MFN1), and Dynamin-related GTPase (OPA1). Collectively, our results showed that adipose tissue-derived MSCs at population doubling seven developed a senescent phenotype that was characterized by metabolic cell changes that can lead to mitochondrial fusion.

2.
Front Mol Neurosci ; 6: 23, 2013.
Article in English | MEDLINE | ID: mdl-23986655

ABSTRACT

Proliferation of endogenous neural stem/progenitor cells (NSPCs) has been identified in both normal and injured adult mammalian spinal cord. Yet the signaling mechanisms underlying the regulation of adult spinal cord NSPCs proliferation and commitment toward a neuronal lineage remain undefined. In this study, the role of three growth factor-mediated signaling pathways in proliferation and neuronal differentiation was examined. Adult spinal cord NSPCs were enriched in the presence of fibroblast growth factor 2 (FGF2). We observed an increase in the number of cells expressing the microtubule-associated protein 2 (MAP2) over time, indicating neuronal differentiation in the culture. Inhibition of the mitogen-activated protein kinase or extracellular signal-regulated kinase (ERK) kinase 1 and 2/ERK 1 and 2 (MEK/ERK1/2) or the phosphoinositide 3-kinase (PI3K)/Akt pathways suppressed active proliferation in adult spinal cord NSPC cultures; whereas neuronal differentiation was negatively affected only when the ERK1/2 pathway was inhibited. Inhibition of the phospholipase Cγ (PLCγ) pathway did not affect proliferation or neuronal differentiation. Finally, we demonstrated that the blockade of either the ERK1/2 or PLCγ signaling pathways reduced neurite branching of MAP2+ cells derived from the NSPC cultures. Many of the MAP2+ cells expressed synaptophysin and had a glutamatergic phenotype, indicating that over time adult spinal cord NSPCs had differentiated into mostly glutamatergic neurons. Our work provides new information regarding the contribution of these pathways to the proliferation and neuronal differentiation of NSPCs derived from adult spinal cord cultures, and emphasizes that the contribution of these pathways is dependent on the origin of the NSPCs.

3.
Brain Res ; 1144: 1-18, 2007 May 04.
Article in English | MEDLINE | ID: mdl-17324383

ABSTRACT

We presented evidence previously that decreasing the glycosylation state of the Kv1.1 potassium channel modified its gating by a combined surface potential and a cooperative subunit interaction mechanism and these effects modified simulated action potentials. Here we continued to test the hypothesis that glycosylation affects channel function in a predictable fashion by increasing and decreasing the glycosylation state of Kv1.2 channels. Compared with Kv1.2, increasing the glycosylation state shifted the V(1/2) negatively with a steeper G-V slope, increased activation kinetics with little change in deactivation kinetics or in their voltage-dependence, and decreased the apparent level of C-type inactivation. Decreasing the glycosylation state had essentially the opposite effects and shifted the V(1/2) positively with a shallower G-V slope, decreased activation kinetics (and voltage-dependence), decreased deactivation kinetics, and increased the apparent level of C-type inactivation. Single channel conductance was not affected by the different glycosylation states of Kv1.2 tested here. Hyperpolarized or depolarized shifts in V(1/2) from wild type were apparently due to an increased or decreased level of channel sialylation, respectively. Data and modeling suggested that the changes in activation properties were mostly predictable within and between channels and were consistent with a surface potential mechanism, but those on deactivation properties were not predictable and were more consistent with a conformational mechanism. Moreover the effect on the deactivation process appeared to be channel-type dependent as well as glycosylation-site dependent. The glycosylation state of Kv1.2 also affected action potentials in simulations. In addition, preventing N-glycosylation decreased cell surface Kv1.2 expression levels by approximately 40% primarily by increasing partial endoplasmic reticulum retention and this effect was completely rescued by Kv1.4 subunits, which are glycosylated, but not by cytoplasmic Kvbeta2.1 subunits. The nonglycosylated Kv1.2 protein had a similar protein half-life as the glycosylated protein and appeared to be folded properly. Thus altering the native Kv1.2 glycosylation state affected its trafficking, gating, and simulated action potentials. Differential glycosylation of ion channels could be used by excitable cells to modify cell signaling.


Subject(s)
Action Potentials/physiology , Ion Channel Gating/physiology , Kv1.2 Potassium Channel/metabolism , Amino Acid Sequence , Animals , CHO Cells , Computer Simulation , Cricetinae , Cricetulus , Electric Conductivity , Glycosylation , Kv1.2 Potassium Channel/chemistry , Kv1.2 Potassium Channel/genetics , Mutagenesis/physiology , Patch-Clamp Techniques/methods , Protein Transport/physiology , Transfection/methods
4.
Brain Res ; 1058(1-2): 30-43, 2005 Oct 05.
Article in English | MEDLINE | ID: mdl-16153617

ABSTRACT

Kv1.1 channels are brain glycoproteins that play an important role in repolarization of action potentials. In previous work, we showed that lack of N-glycosylation, particularly lack of sialylation, of Kv1.1 affected its macroscopic gating properties and slowed activation and C-type inactivation kinetics and produced a depolarized shift in the steady-state activation curve. In our current study, we used single channel analysis to investigate voltage-independent C-type inactivation in both Kv1.1 and Kv1.1N207Q, a glycosylation mutant. Both channels underwent brief and long-lived closures, and the lifetime and frequency of the long-lived closed states were voltage-independent and similar for both channels. We found that, as in macroscopic measurements, Kv1.1N207Q exhibited a approximately 8 mV positive shift in its single channel fractional open time (fo) and a shallower fo-voltage slope compared with Kv1.1. Data suggested that C-type inactivation reflected the equilibration time with at least two slow voltage-independent long-lived closed states that followed the rapid activation process. In addition, data simulation indicated that the C-type inactivation process reflected the equilibration time between the open state and at least two long-lived closed states. Moreover, the faster macroscopic current decay in Kv1.1 mostly reflected a slower equilibration time in these channels as compared with Kv1.1N207Q. Finally, action potential simulations indicated that the N207Q mutation broaden the action potential and decreased the interspike interval. The shape of the action potential was not significantly affected by C-type inactivation, however, for a given channel, C-type inactivation increased the interspike interval. Data and simulations suggested that excitable cells could use differences in K(+) channel glycosylation degree as an additional mechanism to increase channel functional diversity which could modify cell excitability.


Subject(s)
Action Potentials/genetics , Cell Membrane/metabolism , Ion Channel Gating/genetics , Kv1.1 Potassium Channel/metabolism , Neurons/metabolism , Action Potentials/drug effects , Animals , CHO Cells , Cell Membrane/drug effects , Computer Simulation , Cricetinae , Cricetulus , Glycosylation , Ion Channel Gating/drug effects , Kv1.1 Potassium Channel/drug effects , Kv1.1 Potassium Channel/genetics , Mutation/genetics , Neurons/drug effects , Signal Processing, Computer-Assisted , Time Factors
5.
J Physiol ; 550(Pt 1): 51-66, 2003 Jul 01.
Article in English | MEDLINE | ID: mdl-12879861

ABSTRACT

The effect of glycosylation on Kv1.l potassium channel function was investigated in mammalian cells stably transfected with Kv1.l or Kv1.1N207Q. Macroscopic current analysis showed that both channels were expressed but Kv1.1N207Q, which was not glycosylated, displayed functional differences compared with wild-type, including slowed activation kinetics, a positively shifted V 1/2, a shallower slope for the conductance versus voltage relationship, slowed C-type inactivation kinetics, and a reduced extent of and recovery from C-type inactivation. Kv1. 1N207Q activation properties were also less sensitive to divalent cations compared with those of Kv1.l. These effects were largely due to the lack of trans-Golgi added sugars, such as galactose and sialic acid, to the N207 carbohydrate tree. No apparent change in ionic current deactivation kinetics was detected inKv1.1N207Q compared with wild-type. Our data, coupled with modelling, suggested that removal of the N207 carbohydrate tree had two major effects. The first effect slowed the concerted channel transition from the last dosed state to the open state without changing the voltage dependence of its kinetics. This effect contributed to the G-V curve depolarization shift and together with the lower sensitivity to divalent cations suggested that the carbohydrate tree and its negatively charged sialic acids affected the negative surface charge density on the channel's extracellular face that was sensed by the activation gating machinery. The second effect reduced a cooperativity factor that slowed the transition from the open state to the dosed state without changing its voltage dependence. This effect accounted for the shallower G-V slope, and contributed to the depolarized G-V shift, and together with the inactivation changes it suggested that the carbohydrate tree also affected channel conformations. Thus N-glycosylation, and particularly terminal sialylation, affected Kv1.l gating properties both by altering the surface potential sensed by the channel's activation gating machinery and by modifying conformational changes regulating cooperative subunit interactions during activation and inactivation. Differences in glycosylation pattern among closely related channels may contribute to their functional differences and affect their physiological roles.


Subject(s)
Ion Channel Gating , Potassium Channels, Voltage-Gated , Potassium Channels/physiology , Amino Acid Sequence/genetics , Animals , CHO Cells , Cations, Divalent/metabolism , Cricetinae , Electric Conductivity , Extracellular Fluid/metabolism , Glycoproteins/metabolism , Glycosylation , Homeostasis , Ion Channels/physiology , Kinetics , Kv1.1 Potassium Channel , Molecular Sequence Data , Potassium Channels/genetics , Potassium Channels/metabolism , Rats
6.
Exp Neurol ; 173(2): 266-74, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11822890

ABSTRACT

The distribution and relative intrafascicular contribution of myelin fibers derived from spinal segments L-4 to L-6 were analyzed in adult rat sciatic nerve and its main branches, using 200-kDa neurofilament subunit immunodetection in previously injured nerve sections in the L-4 or L-5 spinal branch or both. These branches' functional contribution was evaluated 16 days after the injury, using the method of J. Bain, S. Mackinnon, and D. Hunter (1988, Plast. Reconstr. Surg. 83: 129-136). A common topographic intrafascicular distribution was found in 69% of cases, with notable segregation of L-4 and L-5 fibers and a random distribution for L-6 fibers. At sciatic nerve main branch level, L-4 contributes almost entirely to the peroneal nerve, L-5 to the tibial nerve, and L-6 and other branches to the sural nerve. After injury to L-4, a significant reduction in peroneal nerve functional index (PFI) was observed, as was a reduction in print length (PL). Injury to L-5 caused a significant reduction in the sciatic (SFI) and tibial (TFI) functional nerve indices, an increase in PL, and a reduction in the spread between opposite toes (TS). Finally, transection of both L-4 and L-5 was followed by a significant reduction in all functional indices measured, an increase in PL, and a reduction in intermediate toe (ITS) and opposite toe spread (TS). The results indicate a direct relationship between the distribution and contribution of the spinal nerve fibers forming the sciatic nerve and the alteration in functional indices for sciatic, tibial, and peroneal nerves.


Subject(s)
Mononeuropathies/physiopathology , Nerve Fibers, Myelinated , Sciatic Nerve/physiopathology , Spinal Nerves/physiopathology , Animals , Female , Immunohistochemistry , Lumbosacral Region , Male , Mononeuropathies/pathology , Nerve Fibers, Myelinated/pathology , Neurofilament Proteins/metabolism , Peroneal Nerve/pathology , Peroneal Nerve/physiopathology , Rats , Rats, Wistar , Sciatic Nerve/pathology , Spinal Nerves/pathology , Tibial Nerve/pathology , Tibial Nerve/physiopathology , Wallerian Degeneration/metabolism , Wallerian Degeneration/pathology
7.
Iatreia ; 13(4): 215-220, dic. 2000. ilus, tab
Article in Spanish | LILACS | ID: lil-422912

ABSTRACT

El nervio ciático de la rata está formado por los nervios espinales (NE) lumbares L4, L5 y L6. Sin embargo, aún no se ha definido el aporte en fibras mielínicas de estos nervios espinales a lo largo del tronco nervioso. En este estudio se transectaron selectivamente los NE L4, L5 y L4-L5. Luego de una semana se disecaron los nervios ciático, tibial, sural y peroneal. Estas muestras se fijaron y procesaron para microscopía óptica y a partir de cortes coloreados con azul de toluidina se contaron las fibras mielínicas degeneradas y normales. L4 contribuyó con fibras mielínicas principalmente al nervio peroneal y L5 a los nervios ciático, tibial y sural. En general, el aporte de L6 fue menor y variable a lo largo del tronco nervioso comparado con las otras dos ramas espinales. Nuestros resultados brindan información valiosa para posteriores estudios que busquen correlacionar la contribución de los nervios espinales que componen el ciático y sus ramas principales con la función de la extremidad inferior.


The rat sciatic nerve is composed by the L4, L5 and L6 lumbar spinal nerves. However, the contribution in myelinated fibers originating from these nerves along this nervous trunk has not yet been defined. In the present study, the L4, L5 and L4-L5 spinal nerves were selectively transected. After one week the sciatic, tibial, sural and peroneal nerves were dissected. These samples were fixed and processed for optical microscopy, and both degenerated and normal myelinated fibers were counted in toluidine blue-stained semi-thin sections. L4 contributed with myelinated fibers mainly to the peroneal nerve, and L5 to the sciatic, tibial and sural nerves. In general, the contribution of L6 was smaller and variable along the nervous trunk in comparison to the other two spinal branches. Our results give key information for further studies looking to correlate the contribution of spinal nerves making part of the sciatic nerve and its main branches with hind limb function.


Subject(s)
Spinal Nerves , Nerve Fibers, Myelinated , Sciatic Nerve
SELECTION OF CITATIONS
SEARCH DETAIL
...