Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Org Biomol Chem ; 19(4): 770-774, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33432958

ABSTRACT

A series of cationic monodentate and bidentate iodo(benz)imidazolium-based halogen bond (XB) donors were employed as catalysts in a Mukaiyama aldol reaction. While 5 mol% of a monodentate variant showed noticeable activity, a syn-preorganized bidentate XB donor provided a strong performance even with 0.5 mol% loading. In contrast to the very active BArF4 salts, PF6 or OTf salts were either inactive or showed background reaction through Lewis base catalysis. Repetition experiments clearly ruled out a potential hidden catalysis by elemental iodine and demonstrated the stability of our catalyst over three consecutive cycles.

2.
Angew Chem Int Ed Engl ; 59(17): 6806-6810, 2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32045504

ABSTRACT

Even though halogen bonding-the noncovalent interaction between electrophilic halogen substituents and Lewis bases-has now been established in molecular recognition and catalysis, its use in enantioselective processes is still very rarely explored. Herein, we present the synthesis of chiral bidentate halogen-bond donors based on two iodoimidazolium units with rigidly attached chiral sidearms. With these Lewis acids, chiral recognition of a racemic diamine is achieved in NMR studies. DFT calculations support a 1:1 interaction of the halogen-bond donor with both enantiomers and indicate that the chiral recognition is based on a different spatial orientation of the Lewis bases in the halogen-bonded complexes. In addition, moderate enantioselectivity is achieved in a Mukaiyama aldol reaction with a preorganized variant of the chiral halogen-bond donor. This represents the first case in which asymmetric induction was realized with a pure halogen-bond donor lacking any additional active functional groups.

3.
Chem Sci ; 9(5): 1368-1374, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29675185

ABSTRACT

Allylic and acrylic substrates may be efficiently transformed by a sequential bichromatic photochemical process into derivatives of levulinates or butenolides with high selectivity when phenanthrene is used as a regulator. Thus, UV-A photoinduced cross-metathesis (CM) couples the acrylic and allylic counterparts and subsequent UV-C irradiation initiates E-Z isomerization of the carbon-carbon double bond, followed by one of two competing processes; namely, cyclization by transesterification or a 1,5-H shift and tautomerization. Quantum chemical calculations demonstrate that intermediates are strongly blue-shifted for the cyclization while red-shifted for the 1,5-H shift reaction. Hence, delaying the double bond migration by employing UV-C absorbing phenanthrene, results in a selective novel divergent all-photochemical pathway for the synthesis of fundamental structural motifs of ubiquitous natural products.

4.
ACS Omega ; 2(8): 5137-5141, 2017 Aug 31.
Article in English | MEDLINE | ID: mdl-30023739

ABSTRACT

A simple and practical method to access a variety of benzimidazol-2-ones is reported here. A series of N-alkyl-substituted benzimidazol-2-ones were synthesized by decarbonylative ring contraction starting from corresponding quinoxalinediones for the first time. The utility of the method has been demonstrated by synthesizing recently approved controversial drug flibanserin (Addyi) and a urea analogue of marine antibiotic natural product hunanamycin-A.

5.
Angew Chem Int Ed Engl ; 55(2): 764-7, 2016 Jan 11.
Article in English | MEDLINE | ID: mdl-26586469

ABSTRACT

A sulfur-chelated photolatent ruthenium olefin metathesis catalyst has been equipped with supersilyl protecting groups on the N-heterocyclic carbene ligand. The silyl groups function as an irreversible chromatic kill switch, thus decomposing the catalyst when it is irradiated with 254 nm UV light. Therefore, different types of olefin metathesis reactions may be started by irradiation with 350 nm UV light and prevented by irradiation with shorter wavelengths. The possibility to induce and impede catalysis just by using light of different frequencies opens the pathway for stereolithographic applications and novel light-guided chemical sequences.

SELECTION OF CITATIONS
SEARCH DETAIL
...