Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Adv Mater ; 35(35): e2302237, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37376866

ABSTRACT

Using very large-scale classical molecular dynamics, the mechanics of nano-reinforcement of graphene-based nanocomposites are  examined. Simulations show that significant quantities of large, defect-free, and predominantly flat graphene flakes are required for successful enhancement of materials properties in excellent agreement with experimental and proposed continuum shear-lag theories. The critical lengths for enhancement are approximately 500 nm for graphene and 300 nm and for graphene oxide (GO). The reduction of Young's modulus in GO results in a much smaller enhancement of the composite's Young's modulus. The simulations reveal that the flakes should be aligned and planar for optimal reinforcement. Undulations substantially degrade the enhancement of materials properties.

2.
ACS Appl Nano Mater ; 5(12): 17969-17976, 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36583124

ABSTRACT

Advanced nanoelectromechanical systems made from polymer dielectrics deposited onto 2D-nanomaterials such as graphene are increasingly popular as pressure and touch sensors, resonant sensors, and capacitive micromachined ultrasound transducers (CMUTs). However, durability and accuracy of layered nanocomposites depend on the mechanical stability of the interface between polymer and graphene layers. Here we used molecular dynamics computer simulations to investigate the interface between a sheet of graphene and a layer of parylene-C thermoplastic polymer during large numbers of high-frequency (MHz) cycles of bending relevant to the operating regime. We find that important interfacial sliding occurs almost immediately in usage conditions, resulting in more than 2% expansion of the membrane, a detrimental mechanism which requires repeated calibration to maintain CMUTs accuracy. This irreversible mechanism is caused by relaxation of residual internal stresses in the nanocomposite bilayer, leading to the emergence of self-equilibrated tension in the polymer and compression in the graphene. It arises as a result of deposition-polymerization processing conditions. Our findings demonstrate the need for particular care to be exercised in overcoming initial expansion. The selection of appropriate materials chemistry including low electrostatic interactions will also be key to their successful application as durable and reliable devices.

3.
Sci Rep ; 11(1): 22460, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34789770

ABSTRACT

Controlling the structure of graphene oxide (GO) phases and their smaller analogues, graphene (oxide) quantum dots (GOQDs), is vitally important for any of their widespread intended applications: highly ordered arrangements of nanoparticles for thin-film or membrane applications of GO, dispersed nanoparticles for composite materials and three-dimensional porous arrangements for hydrogels. In aqueous environments, it is not only the chemical composition of the GO flakes that determines their morphologies; external factors such as pH and the coexisting cations also influence the structures formed. By using accurate models of GO that capture the heterogeneity of surface oxidation and very large-scale coarse-grained molecular dynamics that can simulate the behaviour of GO at realistic sizes of GOQDs, the driving forces that lead to the various morphologies in aqueous solution are resolved. We find the morphologies are determined by a complex interplay between electrostatic, [Formula: see text]-[Formula: see text] and hydrogen bonding interactions. Assembled morphologies can be controlled by changing the degree of oxidation and the pH. In acidic aqueous solution, the GO flakes vary from fully aggregated over graphitic domains to partial aggregation via hydrogen bonding between hydroxylated domains, leading to the formation of planar extended flakes at high oxidation ratios and stacks at low oxidation ratios. At high pH, where the edge carboxylic acid groups are deprotonated, electrostatic repulsion leads to more dispersion, but a variety of aggregation behaviour is surprisingly still observed: over graphitic regions, via hydrogen bonding and "face-edge" interactions. Calcium ions cause additional aggregation, with a greater number of "face-face" and "edge-edge" aggregation mechanisms, leading to irregular aggregated structures. "Face-face" aggregation mechanisms are enhanced by the GO flakes possessing distinct domains of hydroxylated and graphitic regions, with [Formula: see text]-[Formula: see text] and hydrogen bonding interactions prevalent between these regions on aggregated flakes respectively. These findings furnish explanations for the aggregation characteristics of GO and GOQDs, and provide computational methods to design directed synthesis routes for self-assembled and associated applications.

4.
Adv Mater ; 32(36): e2003213, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32720366

ABSTRACT

Controlling the structure of graphene and graphene oxide (GO) phases is vitally important for any of its widespread intended applications: highly ordered arrangements of nanoparticles are needed for thin-film or membrane applications of GO, dispersed nanoparticles for composite materials, and 3D porous arrangements for hydrogels. By combining coarse-grained molecular dynamics and newly developed accurate models of GO, the driving forces that lead to the various morphologies are resolved. Two hydrophilic polymers, poly(ethylene glycol) (PEG) and poly(vinyl alcohol) (PVA), are used to illustrate the thermodynamically stable morphologies of GO and relevant dispersion mechanisms. GO self-assembly can be controlled by changing the degree of oxidation, varying from fully aggregated over graphitic domains to intercalated assemblies with polymer bilayers between sheets. The long-term stability of a dispersion is extremely important for many commercial applications of GO composites. For any degree of oxidation, GO does not disperse in PVA as a thermodynamic equilibrium product, whereas in PEG dispersions are only thermodynamically stable for highly oxidized GO. These findings-validated against the extensive literature on GO systems in organic solvents-furnish quantitative explanations for the empirically unpredictable aggregation characteristics of GO and provide computational methods to design directed synthesis routes for diverse self-assemblies and applications.

5.
Phys Chem Chem Phys ; 21(10): 5716-5722, 2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30801077

ABSTRACT

Mechanical exfoliation techniques are widely used to create high quality graphene samples for analytical use. Increasingly, mechanical methods are used to create large quantities of graphene, yet there is surprisingly little molecular insight into the mechanisms involved. We study the exfoliation of graphene with sticky tape using molecular dynamics. This is made possible by using a recently developed molecular dynamics forcefield, GraFF, to represent graphene's dispersion interactions. For nano-sized flakes we observe two different mechanisms depending on the polymer-adhesive used. A peeling mechanism which mixes shearing and normal mode exfoliation promotes synthesis of graphene rather than many-layered graphite. Armed with this new chemical insight we discuss the experimental methods that could preferentially produce graphene by mechanical exfoliation. We also introduce a mathematical model describing the repeated exfoliation of graphite.

6.
Adv Mater ; 30(13): e1705791, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29436032

ABSTRACT

Graphite's lubricating properties due to the "weak" interactions between individual layers have long been known. However, these interactions are not weak enough to allow graphite to readily exfoliate into graphene on a large scale. Separating graphite layers down to a single sheet is an intense area of research as scientists attempt to utilize graphene's superlative properties. The exfoliation and processing of layered materials is governed by the friction between layers. Friction on the macroscale can be intuitively understood, but there is little understanding of the mechanisms involved in nanolayered materials. Using molecular dynamics and a new forcefield, graphene's unusual behavior in a superlubric state is examined, and the energy dissipated between two such surfaces sliding past each other is shown. The dependence of friction on temperature and surface roughness is described, and agreement with experiment is reported. The accuracy of the simulated behavior enables the processes that drive exfoliation of graphite into individual graphene sheets to be described. Taking into account the friction between layers, a peeling mechanism of exfoliation is predicted to be of lower energy cost than shearing.

7.
ACS Omega ; 3(6): 6439-6445, 2018 Jun 30.
Article in English | MEDLINE | ID: mdl-31458824

ABSTRACT

We recently showed, using chemically specific modeling and simulation, how the process of intercalation of polymers within clay sheets occurs, transforming the large-scale materials properties by a specific set of spatial and temporal processes that can lead to exfoliation. Here, we use the same hierarchal multiscale modeling scheme to understand the processes that occur during the shear-induced processing of clay-polymer nanocomposites. For both hydrophobic polymers (polyethylene) and hydrophilic polymers (poly(ethylene glycol)), we used free-energy methods to identify the lowest-free-energy separation of the clay sheets; the polymer molecules spontaneously intercalate into the clay interlayer from the surrounding polymer melt. We apply shear forces to investigate exfoliation and find that while exfoliation is promoted by shearing, it is the surfactant molecules that play the dominant role in resisting it.

8.
Nano Lett ; 15(12): 8108-13, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26575149

ABSTRACT

We describe the mechanism that leads to full exfoliation and dispersion of organophilic clays when mixed with molten hydrophilic polymers. This process is of fundamental importance for the production of clay-polymer nanocomposites with enhanced materials properties. The chemically specific nature of our multiscale approach allows us to probe how chemistry, in combination with processing conditions, produces such materials properties at the mesoscale and beyond. In general agreement with experimental observations, we find that a higher grafting density of charged quaternary ammonium surfactant ions promotes exfoliation, by a mechanism whereby the clay sheets slide transversally over one another. We can determine the elastic properties of these nanocomposites; exfoliated and partially exfoliated morphologies lead to substantial enhancement of the Young's modulus, as found experimentally.

9.
Langmuir ; 31(8): 2493-501, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25647546

ABSTRACT

Compared with proteins, the relationship between structure, dynamics, and function of RNA enzymes (known as ribozymes) is far less well understood, despite the fact that ribozymes are found in many organisms and are often conceived as "molecular fossils" of the first self-replicating molecules to have arisen on Earth. To investigate how ribozymal function is governed by structure and dynamics, we study the full hammerhead ribozyme in bulk water and in an aqueous clay mineral environment by computer simulation using replica-exchange molecular dynamics. Through extensive sampling of the major conformational states of the hammerhead ribozyme, we are able to show that the hammerhead manifests a free-energy landscape reminiscent of that which is well known in proteins, exhibiting a "funnel" topology that guides the ribozyme into its globally most stable conformation. The active-site geometry is found to be closely correlated to the tertiary structure of the ribozyme, thereby reconciling conflicts between previously proposed mechanisms for the self-scission of the hammerhead. The conformational analysis also accounts for the differences reported experimentally in the catalytic activity of the hammerhead ribozyme, which is reduced when interacting with clay minerals as compared with bulk water.


Subject(s)
Aluminum Silicates/chemistry , Molecular Dynamics Simulation , RNA, Catalytic/chemistry , Water/chemistry , Clay , Models, Molecular , Molecular Structure , Particle Size , RNA, Catalytic/metabolism , Surface Properties , Water/metabolism
10.
Adv Mater ; 27(6): 966-84, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25488829

ABSTRACT

A quantitative description is presented of the dynamical process of polymer intercalation into clay tactoids and the ensuing aggregation of polymer-entangled tactoids into larger structures, obtaining various characteristics of these nanocomposites, including clay-layer spacings, out-of-plane clay-sheet bending energies, X-ray diffractograms, and materials properties. This model of clay-polymer interactions is based on a three-level approach, which uses quantum mechanical and atomistic descriptions to derive a coarse-grained yet chemically specific representation that can resolve processes on hitherto inaccessible length and time scales. The approach is applied to study collections of clay mineral tactoids interacting with two synthetic polymers, poly(ethylene glycol) and poly(vinyl alcohol). The controlled behavior of layered materials in a polymer matrix is centrally important for many engineering and manufacturing applications. This approach opens up a route to computing the properties of complex soft materials based on knowledge of their chemical composition, molecular structure, and processing conditions.

11.
Langmuir ; 29(5): 1573-83, 2013 Feb 05.
Article in English | MEDLINE | ID: mdl-23302032

ABSTRACT

We present the results of large-scale molecular simulations, run over several tens of nanoseconds, of 25-mer sequences of single-stranded ribonucleic acid (RNA) in bulk water and at the surface of three hydrated positively charged MgAl layered double hydroxide (LDH) minerals. The three LDHs differ in surface charge density, through varying the number of isomorphic Al substitutions. Over the course of the simulations, RNA adsorbs tightly to the LDH surface through electrostatic interactions between the charged RNA phosphate groups and the alumina charge sites present in the LDH sheet. The RNA strands arrange parallel to the surface with the base groups aligning normal to the surface and exposed to the bulk aqueous region. This templating effect makes LDH a candidate for amplifying the population of a known RNA sequence from a small number of RNAs. The structure and interactions of RNA at a positively charged, hydroxylated LDH surface were compared with those of RNA at a positively charged calcium montmorillonite surface, allowing us to establish the comparative effect of complexation and water structure at hydroxide and silicate surfaces. The systems were studied by computing radial distribution functions, atom density plots, and radii of gyration, as well as visualization. An observation pertinent to the role of these minerals in prebiotic chemistry is that, for a given charge density on the mineral surface, different genetic sequences of RNA adopt different configurations.


Subject(s)
Aluminum/chemistry , Hydroxides/chemistry , Magnesium/chemistry , Minerals/chemistry , RNA/chemistry , Models, Molecular , Molecular Dynamics Simulation , Surface Properties
12.
An Acad Bras Cienc ; 82(1): 43-60, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20209242

ABSTRACT

During exploration for oil and gas, a technical drilling fluid is used to lubricate the drill bit, maintain hydrostatic pressure, transmit sensor readings, remove rock cuttings and inhibit swelling of unstable clay based reactive shale formations. Increasing environmental awareness and resulting legislation has led to the search for new, improved biodegradable drilling fluid components. In the case of additives for clay swelling inhibition, an understanding of how existing effective additives interact with clays must be gained to allow the design of improved molecules. Owing to the disordered nature and nanoscopic dimension of the interlayer pores of clay minerals, computer simulations have become an increasingly useful tool for studying clay-swelling inhibitor interactions. In this work we briefly review the history of the development of technical drilling fluids, the environmental impact of drilling fluids and the use of computer simulations to study the interactions between clay minerals and swelling inhibitors. We report on results from some recent large-scale molecular dynamics simulation studies on low molecular weight water-soluble macromolecular inhibitor molecules. The structure and interactions of poly(propylene oxide)-diamine, poly(ethylene glycol) and poly(ethylene oxide)-diacrylate inhibitor molecules with montmorillonite clay are studied.

13.
An. acad. bras. ciênc ; 82(1): 43-60, Mar. 2010. ilus, graf, tab
Article in English | LILACS | ID: lil-539314

ABSTRACT

During exploration for oil and gas, a technical drilling fluid is used to lubricate the drill bit, maintain hydrostatic pressure, transmit sensor readings, remove rock cuttings and inhibit swelling of unstable clay based reactive shale formations. Increasing environmental awareness and resulting legislation has led to the search for new, improved biodegradable drilling fluid components. In the case of additives for clay swelling inhibition, an understanding of how existing effective additives interact with clays must be gained to allow the design of improved molecules. Owing to the disordered nature and nanoscopic dimension of the interlayer pores of clay minerals, computer simulations have become an increasingly useful tool for studying clay-swelling inhibitor interactions. In this work we briefly review the history of the development of technical drilling fluids, the environmental impact of drilling fluids and the use of computer simulations to study the interactions between clay minerals and swelling inhibitors. We report on results from some recent large-scale molecular dynamics simulation studies on low molecular weight water-soluble macromolecular inhibitor molecules. The structure and interactions of poly(propylene oxide)-diamine, poly(ethylene glycol) and poly(ethylene oxide)-diacrylate inhibitor molecules with montmorillonite clay are studied.


Durante a exploração de óleo e gás um fluido de perfuração é usado para lubrificar 'bit' da perfuradora, manter a pressão hidrostática, transmitir sensores de leitura, remover resíduos da rocha e inibir o inchamento da argila instável baseada nas formações dos folhelhos. O aumento das preocupações ambientais bem como a legislação resultante levou à procura de novos fluidos de perfuração com componentes biodegradáveis. No caso dos aditivos para inibir o inchamento das argilas o entendimento das interações entre os aditivos e as argilas tem que ser adquirido para permitir o projeto de moléculas commelhores propriedades. Devido à natureza desordenada da dimensão nanoscópica dos nano poros dos minerais argilosos, simulações computacionais têm se tornado uma ferramenta poderosa para estudar as interações entre o inchamento da argila e o inibidor. Neste trabalho revisamos brevemente o histórico do desenvolvimento de fluidos técnicos de perfuração, o impacto ambiental dos fluidos de perfuração e o uso de simulações computacionais para estudar as interações entre os fluidos de perfuração e os inibidores do inchamento. Nós reportamos resultados para alguns estudos baseados em simulações de dinâmica molecular em larga escala em uma solução aquosa de baixo peso molecular com solutos compostos por macromoléculas inibidoras. A estrutura e as interações entre inibidores compostos por polipropileno óxido, polietileno óxido e moléculas e a argila montmorilonita são estudadas.

14.
Philos Trans A Math Phys Eng Sci ; 367(1897): 2557-71, 2009 Jun 28.
Article in English | MEDLINE | ID: mdl-19451110

ABSTRACT

We describe computational science research that uses petascale resources to achieve scientific results at unprecedented scales and resolution. The applications span a wide range of domains, from investigation of fundamental problems in turbulence through computational materials science research to biomedical applications at the forefront of HIV/AIDS research and cerebrovascular haemodynamics. This work was mainly performed on the US TeraGrid 'petascale' resource, Ranger, at Texas Advanced Computing Center, in the first half of 2008 when it was the largest computing system in the world available for open scientific research. We have sought to use this petascale supercomputer optimally across application domains and scales, exploiting the excellent parallel scaling performance found on up to at least 32 768 cores for certain of our codes in the so-called 'capability computing' category as well as high-throughput intermediate-scale jobs for ensemble simulations in the 32-512 core range. Furthermore, this activity provides evidence that conventional parallel programming with MPI should be successful at the petascale in the short to medium term. We also report on the parallel performance of some of our codes on up to 65 636 cores on the IBM Blue Gene/P system at the Argonne Leadership Computing Facility, which has recently been named the fastest supercomputer in the world for open science.

15.
Dalton Trans ; (7): 1164-71, 2009 Feb 21.
Article in English | MEDLINE | ID: mdl-19322487

ABSTRACT

Syntheses and structural characterization of the complexes [M(eta-P(2)C(3)Bu(t)(3))(2)], (M = Ni, Pd, Pt) are described. The nickel compound has an 18-electron [Ni(eta(5)-P(2)C(3)Bu(t)(3))(eta(3)-P(2)C(3)Bu(t)(3))] structure, whereas the palladium and platinum compounds both have a 16-electron [M(eta(3)-P(2)C(3)Bu(t)(3))(2)] structure (M = Pd, Pt).The electronic structure is examined and discussed using both photoelectron spectroscopy and DFT calculations.

16.
J Am Chem Soc ; 130(37): 12485-95, 2008 Sep 17.
Article in English | MEDLINE | ID: mdl-18722440

ABSTRACT

Layered double hydroxides (LDHs) have been shown to form staged intermediate structures in experimental studies of intercalation. However, the mechanism by which staged structures are produced remains undetermined. Using molecular dynamics simulations, we show that LDHs are flexible enough to deform around bulky intercalants such as deoxyribonucleic acid (DNA). The flexibility of layered materials has previously been shown to affect the pathway by which staging occurs. We explore three possible intermediate structures which may form during intercalation of DNA into Mg2Al LDHs and study how the models differ energetically. When DNA strands are stacked directly on top of each other, the LDH system has a higher potential energy than when they are stacked in a staggered or interstratified structure. It is generally thought that staged intercalation occurs through a Daumas-Herold or a Rudorff model. We find, on average, greater diffusion coefficients for DNA strands in a Daumas-Herold configuration compared to a Rudorff model and a stage-1 structure. Our simulations provide evidence for the presence of peristaltic modes of motion within Daumas-Herold configurations. This is confirmed by spectral analysis of the thickness variation of the basal spacing. Peristaltic modes are more prominent in the Daumas-Herold structure compared to the Rudorff and stage-1 structures and support a mechanism by means of which bulky intercalated molecules such as DNA rapidly diffuse within an LDH interlayer.


Subject(s)
Aluminum Hydroxide/chemistry , DNA/chemistry , Intercalating Agents/chemistry , Magnesium Hydroxide/chemistry , Nanostructures/chemistry , Computer Simulation , Diffusion , Drug Combinations , Models, Chemical , Models, Molecular , Nucleic Acid Conformation , X-Ray Diffraction
17.
J Am Chem Soc ; 130(14): 4742-56, 2008 Apr 09.
Article in English | MEDLINE | ID: mdl-18345669

ABSTRACT

The intercalation of DNA into layered double hydroxides (LDHs) has various applications, including drug delivery for gene therapy and origins of life studies. The nanoscale dimensions of the interlayer region make the exact conformation of the intercalated DNA difficult to elucidate experimentally. We use molecular dynamics techniques, performed on high performance supercomputing grids, to carry out large-scale simulations of double stranded, linear and plasmid DNA up to 480 base pairs in length intercalated within a magnesium-aluminum LDH. Currently only limited experimental data have been reported for these systems. Our models are found to be in agreement with experimental observations, according to which hydration is a crucial factor in determining the structural stability of DNA. Phosphate backbone groups are found to align with aluminum lattice positions. At elevated temperatures and pressures, relevant to origins of life studies which maintain that the earliest life forms originated around deep ocean hydrothermal vents, the structural stability of LDH-intercalated DNA is substantially enhanced as compared to DNA in bulk water. We also discuss how the materials properties of the LDH are modified due to DNA intercalation.


Subject(s)
Aluminum Hydroxide/chemistry , DNA/chemistry , Magnesium Hydroxide/chemistry , Computer Simulation , DNA/ultrastructure , Hydrogen Bonding , Models, Molecular , Nucleic Acid Conformation , Quantum Theory , Water/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...